Background and Objective: Tick-borne hemoparasitic illnesses pose a serious threat to the well-being and productivity of cattle. This study aimed to investigate the prevalence of tick-borne hemoparasites in Cameroon, ...Background and Objective: Tick-borne hemoparasitic illnesses pose a serious threat to the well-being and productivity of cattle. This study aimed to investigate the prevalence of tick-borne hemoparasites in Cameroon, with a specific focus on the Noun and Nde Divisions of the West Region. Methodology: A total of 423 cattle from 10 villages in both divisions were included in the study. Blood smears were prepared and subjected to microscopic screening for Babesia and Anaplasma parasites. Results: The prevalence of Anaplasma was found to be 23.4%, while Babesia exhibited a seroprevalence of 17.3%. Samples from Institute of Agricultural Research for Development (IRAD) and Koupa Ngangnou demonstrated significantly higher prevalence rates, potentially influenced by climate variations affecting tick populations. Additionally, 17.3% of the animals exhibited low hematocrit levels, indicative of anemia. No significant associations were observed between the presence of hemoparasite infection and cattle characteristics. Conclusion: This study provides fundamental data on the extensive distribution and impact of tick-borne hemoparasites in a significant cattle-producing region of Cameroon.展开更多
Cowpea (Vigna unguiculata L. [Walp.]) in one of the main grain legumes contributing to food security and poverty alleviation in Sub-Saharan Africa. To control the highly damaging legume pod borer Maruca vitrata F., tr...Cowpea (Vigna unguiculata L. [Walp.]) in one of the main grain legumes contributing to food security and poverty alleviation in Sub-Saharan Africa. To control the highly damaging legume pod borer Maruca vitrata F., transgenic cowpea lines expressing the insecticidal Cry1Ab Bt protein were developed. In this study, we evaluated the impact of Cry1Ab transgene expression on the susceptibility of four cowpea lines (named IT97K-T, IT98K-T, Gourgou-T and Nafi-T) and their respective non-transgenic near isogenic lines (IT97K, IT98K, Gourgou and Nafi) to Cowpea aphid-borne mosaic virus (CABMV) in greenhouse conditions. In a preliminary quality control test by enzyme-linked immunosorbent assay, the presence of Cry1Ab protein in transgenic seed lots ranged from 59% to 72%, with no significant differences among the lines (χ2 = 3.26;p = 0.35). Upon virus inoculation, all cowpea lines exhibited mosaic symptoms with similar severity between 7- and 11-day post-inoculation. No significant differences were observed in symptom severity. Significant differences were found between cowpea lines for time of symptom onset, virus accumulation in plants and days to 50% flowering. However, while comparing pairs of transgenic lines and corresponding non-transgenic lines, virus accumulation showed not significant differences whatever the pair. Time of symptom onset and days to 50% flowering did not also differ significantly between pairs of cowpea lines except Nafi/Nafi-T in which transgenic Nafi-T showed earlier symptoms (7.4 ± 0.7 vs. 8.9 ± 0.8 days post-inoculation) and shorter flowering time (37.3 ± 0.6 vs. 42 ± 1.7 days after sowing). Overall, these findings improve our understanding of the effects of Cry1Ab gene mediated genetic modification on cowpea infection by Cowpea aphid-borne mosaic virus, with potential implications for environmental safety assessment.展开更多
Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic mo...Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
文摘Background and Objective: Tick-borne hemoparasitic illnesses pose a serious threat to the well-being and productivity of cattle. This study aimed to investigate the prevalence of tick-borne hemoparasites in Cameroon, with a specific focus on the Noun and Nde Divisions of the West Region. Methodology: A total of 423 cattle from 10 villages in both divisions were included in the study. Blood smears were prepared and subjected to microscopic screening for Babesia and Anaplasma parasites. Results: The prevalence of Anaplasma was found to be 23.4%, while Babesia exhibited a seroprevalence of 17.3%. Samples from Institute of Agricultural Research for Development (IRAD) and Koupa Ngangnou demonstrated significantly higher prevalence rates, potentially influenced by climate variations affecting tick populations. Additionally, 17.3% of the animals exhibited low hematocrit levels, indicative of anemia. No significant associations were observed between the presence of hemoparasite infection and cattle characteristics. Conclusion: This study provides fundamental data on the extensive distribution and impact of tick-borne hemoparasites in a significant cattle-producing region of Cameroon.
文摘Cowpea (Vigna unguiculata L. [Walp.]) in one of the main grain legumes contributing to food security and poverty alleviation in Sub-Saharan Africa. To control the highly damaging legume pod borer Maruca vitrata F., transgenic cowpea lines expressing the insecticidal Cry1Ab Bt protein were developed. In this study, we evaluated the impact of Cry1Ab transgene expression on the susceptibility of four cowpea lines (named IT97K-T, IT98K-T, Gourgou-T and Nafi-T) and their respective non-transgenic near isogenic lines (IT97K, IT98K, Gourgou and Nafi) to Cowpea aphid-borne mosaic virus (CABMV) in greenhouse conditions. In a preliminary quality control test by enzyme-linked immunosorbent assay, the presence of Cry1Ab protein in transgenic seed lots ranged from 59% to 72%, with no significant differences among the lines (χ2 = 3.26;p = 0.35). Upon virus inoculation, all cowpea lines exhibited mosaic symptoms with similar severity between 7- and 11-day post-inoculation. No significant differences were observed in symptom severity. Significant differences were found between cowpea lines for time of symptom onset, virus accumulation in plants and days to 50% flowering. However, while comparing pairs of transgenic lines and corresponding non-transgenic lines, virus accumulation showed not significant differences whatever the pair. Time of symptom onset and days to 50% flowering did not also differ significantly between pairs of cowpea lines except Nafi/Nafi-T in which transgenic Nafi-T showed earlier symptoms (7.4 ± 0.7 vs. 8.9 ± 0.8 days post-inoculation) and shorter flowering time (37.3 ± 0.6 vs. 42 ± 1.7 days after sowing). Overall, these findings improve our understanding of the effects of Cry1Ab gene mediated genetic modification on cowpea infection by Cowpea aphid-borne mosaic virus, with potential implications for environmental safety assessment.
文摘Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.