A novel and simple synthetic way using NaBH4 in the mixure of H2O-THF was applied to prepare 1,2-bis(diphenylphosphinoborane)ethane, dppe(BH3)2, in high yield and purity. The phosphanylborohydride compound dppe(BH3)2 ...A novel and simple synthetic way using NaBH4 in the mixure of H2O-THF was applied to prepare 1,2-bis(diphenylphosphinoborane)ethane, dppe(BH3)2, in high yield and purity. The phosphanylborohydride compound dppe(BH3)2 was isolated in the form of colorless crystals and characterized by single crystal X-ray diffraction, 1H, 13C, 31P and 11B NMR spectroscopy. Prismatic colorless crystals of dppe(BH3)2 were obtained in monoclinic crystal system and space group P21 with two asymmetric units in the unit cell. Lattice parameters were: a = 11.657(2), b = 17.237(2), c = 12.764(2) ?, β = 98.735(14)°, 2535.0(7) ?展开更多
It is reported that alkali-metal borohydrides (MBH4, M = Li, Na and K) are efficient catalysts for ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). Polypeptides are prepared in quan...It is reported that alkali-metal borohydrides (MBH4, M = Li, Na and K) are efficient catalysts for ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). Polypeptides are prepared in quantitative yields with relatively narrow molecular weight distributions (MWDs = 1.1-1.5) which depend on the reaction temperature. End groups of the produced polypeptide are studied in detail by MALDI-ToF MS, IH-NMR, 13C-NMR, IH-1H COSY and IH-13C HMQC analyses. The results indicate that α-hydroxy-ω-aminotelechelic polypeptides are formed which are suitable for post- polymerization functionalization.展开更多
Complexes of lanthanide trisborohydrides, formally Ln(BH4)3(THF), (Ln=La, Ce, Sm, Yb), were synthesized and their catalytic activity for polymerization of ε-caprolactone was studied. All the complexes can catal...Complexes of lanthanide trisborohydrides, formally Ln(BH4)3(THF), (Ln=La, Ce, Sm, Yb), were synthesized and their catalytic activity for polymerization of ε-caprolactone was studied. All the complexes can catalyze this polymerization. It was found that the catalytic activities decreased in the order of La〉Ce〉Sm〉Yb. The crystal structure of cerium trisborohydride was determined for the first time by single crystal X-ray diffraction analysis. It is an ionic pair complex of [Ce(BH4)E(THF)5][Ce(BH4)4(THF)2]. The cationic part involves two ηa-BH4 ligands, while the anionic part involves two η3-BH4 groups and two η2-BH4 groups.展开更多
LiBH_(4) and Mg(BH_(4))_(2) with high theoretical hydrogen mass capacity receive significant attentions for hy-drogen storage.Also,these compounds can be potentially applied as solid-state electrolytes with their high...LiBH_(4) and Mg(BH_(4))_(2) with high theoretical hydrogen mass capacity receive significant attentions for hy-drogen storage.Also,these compounds can be potentially applied as solid-state electrolytes with their high ionic conductivity.However,their applications are hindered by the poor kinetics and reversibility for hydrogen storage and low ionic conductivity at room temperature,respectively.To address these challenges,effective strategies towards engineering the hydrogen storage properties and the emerging solid-state electrolytes with improved performances have been summarized.The focuses are on the state-of-the-art developments of Li/Mg-based borohydrides with a parallel comparison of similar methods ap-plied in both hydrogen storage and solid-state electrolytes,particularly on the phase,structure,and thermal properties changes of Li/Mg-based borohydrides induced by milling,ion substitution,coordination,adding additives/catalysts,and hydrides.The similarities and differences between the strategies towards two kinds of applications are also discussed and prospected.The review will shed light on the future development of Li/Mg-based borohydrides for hydrogen storage and solid-state electrolytes.展开更多
Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg elec...Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells.展开更多
As an environmentally friendly and high-density energy carrier,hydrogen has been recognized as one of the ideal alternatives for fossil fuels.One of the major challenges faced by“hydrogen economy”is the development ...As an environmentally friendly and high-density energy carrier,hydrogen has been recognized as one of the ideal alternatives for fossil fuels.One of the major challenges faced by“hydrogen economy”is the development of efficient,low-cost,safe and selective hydrogen generation from chemical storage materials.In this review,we summarize the recent advances in hydrogen production via hydrolysis and alcoholysis of light-metal-based materials,such as borohydrides,Mg-based and Al-based materials,and the highly efficient regeneration of borohydrides.Unfortunately,most of these hydrolysable materials are still plagued by sluggish kinetics and low hydrogen yield.While a number of strategies including catalysis,alloying,solution modification,and ball milling have been developed to overcome these drawbacks,the high costs required for the“one-pass”utilization of hydrolysis/alcoholysis systems have ultimately made these techniques almost impossible for practical large-scale applications.Therefore,it is imperative to develop low-cost material systems based on abundant resources and effective recycling technologies of spent fuels for efficient transport,production and storage of hydrogen in a fuel cell-based hydrogen economy.展开更多
In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of...In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to prove experimentally the mutual destabilization between LiBH4 and Mg2NiH4.A detailed account of the kinetic and thermodynamic features of the dehydrogenation process is reported here.展开更多
High dispersive copper nanoparticles were prepared by chemical reduction method using potassium borohydride as reducing agent.The effects of reactant ratio,concentration of CuSO4,reaction temperature,and dispersant on...High dispersive copper nanoparticles were prepared by chemical reduction method using potassium borohydride as reducing agent.The effects of reactant ratio,concentration of CuSO4,reaction temperature,and dispersant on the size of product and conversion rate were studied.The morphologies of copper nanoparticles were characterized by scanning electron microscopy.The results show that the optimum process conditions are as follows:the molar ratio of KBH4 to CuSO4 is 0.75(3:4),concentration of CuSO4 is 0.4 mol/L,reaction temperature is 30℃,and dispersant is n-butyl alcohol.The average particles size of copper powders with spherical shape gained is about 100 nm.展开更多
Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a...Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a lower activation energy. The combination of borohydride and IL is very easy to realize and no expensive rare earth metals are required. The composite of the ILs with complex hydrides decreases the enthalpy and activation energy for the hydrogen desorption. The Coulomb interaction between borohydride and IL leads to a destabilization of the materials with a significantly lower enthalpy for hydrogen desorption. Here, we report a simple ion exchange reaction using various ILs, such as vinylbenzyltrimethylammonium chloride([VBTMA][Cl]), 1-butyl-3-methylimidazolium chloride([bmim][Cl]), and 1-ethyl-1-methylpyrrolidinium bromide([EMPY][Br]) with NaBH4 to decrease the hydrogen desorption temperature. Dehydrogenation of 1-butyl-3-methylimidazolium borohydride([bmim][BH4]) starts below 100℃. The quantity of desorbed hydrogen ranges between 2.4 wt% and 2.9 wt%, which is close to the theoretical content of hydrogen. The improvement in dehydrogenation is due to the strong amine cation that destabilizes borohydride by charge transfer.展开更多
Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolys...Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.展开更多
Lanthanide borohydrides Ln(BH_4)_3(THF)_3 (Ln=Yb, Er), prepared from LnCl_3 and NaBH_4 in THF, were characterized by elemental analysis, infrared spectrum and X-ray diffraction analysis. Yb(BH_4)_3(THF)_3 and Er(BH_4)...Lanthanide borohydrides Ln(BH_4)_3(THF)_3 (Ln=Yb, Er), prepared from LnCl_3 and NaBH_4 in THF, were characterized by elemental analysis, infrared spectrum and X-ray diffraction analysis. Yb(BH_4)_3(THF)_3 and Er(BH_4)_3(THF)_3 are isostructural. Each complex contains two η3-BH_4 ligands, an η2-BH_4 ligand and three THF molecules in a distorted octahedron centered about the lanthanide atom. The three B atoms in a complex are coplanar with the lanthanide atom, and the two η3-BH_4 ligands lie opposite to each other.展开更多
Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mec...Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.展开更多
The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImB...The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.展开更多
Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application o...Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application of ILs as the potential green solvent for a wide variety of synthetic processes is an area of intense researches. High yield, high selectivity, and good catalytic charac-teristics have usually been achieved. After the isolation of products, ILs can usually be recovered and recycled many times by simple treating procedures, such as, filtration, extraction, and dryness.展开更多
Nanoparticles have properties that can be fine-tuned by their size as well as shape.Hence,there is significant current interest in preparing nano-materials of small size dispersity and to arrange them in close-packed ...Nanoparticles have properties that can be fine-tuned by their size as well as shape.Hence,there is significant current interest in preparing nano-materials of small size dispersity and to arrange them in close-packed aggregates.This letter describes a way of synthesising silver nanoparticles and their protection to aggregate by silica gel.The combination of catalytic quantities of immobilized silver nanoparticles with reductive ability of NaBH_4 efficiently reduces aromatic nitroarenes to the corresponding amines in aqueous medium.Noteworthy is that highly chemoselective reactions were achieved in the presence of other functional groups such as halogen and carboxylic acid groups.The silver particles immobilized on silica gel are stable in the presence of oxygen for several months.展开更多
Two new hydrogen storage compounds,Na Zn(BH4)3·en and Na Zn(BH4)3·2en(en=ethylene diamine)are synthesized by a solution method.They can release 6.4 wt%and 6.3 wt%pure hydrogen below 200℃,respectively,demons...Two new hydrogen storage compounds,Na Zn(BH4)3·en and Na Zn(BH4)3·2en(en=ethylene diamine)are synthesized by a solution method.They can release 6.4 wt%and 6.3 wt%pure hydrogen below 200℃,respectively,demonstrating the potential to be used as hydrogen carriers.Additionally,their dehydrogenation products,thermodynamics and kinetics are well characterized and analyzed.Results shows that the stronger Zn-N interactions and the Hδ+–Hδ-interactions are significant for their stability below 100℃,relatively low decomposition temperatures and elimination of gas impurities.展开更多
PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing ...PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.展开更多
The mixture of(2NaBH4+ MnCl2) was ball milled in a magneto-mill. No gas release was detected. The XRD patterns of the ball milled mixture exhibit only the Bragg diffraction peaks of the Na Cl-type salt which on the ba...The mixture of(2NaBH4+ MnCl2) was ball milled in a magneto-mill. No gas release was detected. The XRD patterns of the ball milled mixture exhibit only the Bragg diffraction peaks of the Na Cl-type salt which on the basis of the present X-ray diffraction results and the literature is likely to be a solid solution Na(Cl)x(BH4)(1-x), possessing a cubic Na Cl-type crystalline structure. No presence of any crystalline hydride was detected by powder X-ray diffraction which clearly shows that NaBH4in the initial mixture must have reacted with MnCl2forming a Na Cl-type by-product and another hydride that does not exhibit X-ray Bragg diffraction peaks. Mass spectrometry(MS) of gas released from the ball milled mixture during combined MS/thermogravimetric analysis(TGA)/differential scanning calorimetry(DSC) experiments, confirms mainly hydrogen(H2) with a small quantity of diborane gas, B2H6. The Fourier transform infra-red(FT-IR) spectrum of the ball milled(2NaBH4+ MnCl2) is quite similar to the FT-IR spectrum of crystalline manganese borohydride, c-Mn(BH4)2, synthesized by ball milling, which strongly suggests that the amorphous hydride mechano-chemically synthesized during ball milling could be an amorphous manganese borohydride. Remarkably, the process of solvent filtration and extraction at 42 °C, resulted in the transformation of mechano-chemically synthesized amorphous manganese borohydride to a nanostructured,crystalline, c-Mn(BH4)2hydride.展开更多
The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte...The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.展开更多
A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of ali...A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of aliphatic and aromatic aldehydes,ketones and amines when mixed with NaBH;/silica chloride at room temperature,afforded excellent yield of the corresponding amines.展开更多
基金Partial support of this work by the Turkish Academy of Sciences and the Scientific and Technological Research Council of Turkey(TUBITAK,Project No:105M357)is gratefully acknowledgedL.T.Y ildirim thanks Hacettepe University Scientific Research Unit(grant,No.04 A602004)for financial support.
文摘A novel and simple synthetic way using NaBH4 in the mixure of H2O-THF was applied to prepare 1,2-bis(diphenylphosphinoborane)ethane, dppe(BH3)2, in high yield and purity. The phosphanylborohydride compound dppe(BH3)2 was isolated in the form of colorless crystals and characterized by single crystal X-ray diffraction, 1H, 13C, 31P and 11B NMR spectroscopy. Prismatic colorless crystals of dppe(BH3)2 were obtained in monoclinic crystal system and space group P21 with two asymmetric units in the unit cell. Lattice parameters were: a = 11.657(2), b = 17.237(2), c = 12.764(2) ?, β = 98.735(14)°, 2535.0(7) ?
基金financially supported by the National Natural Science Foundation of China(No.21174122)Special Funds for Major Basic Research Projects(No.G2011CB606001)Zhejiang Provincial Natural Science Foundation of China(No.Y4110115)
文摘It is reported that alkali-metal borohydrides (MBH4, M = Li, Na and K) are efficient catalysts for ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). Polypeptides are prepared in quantitative yields with relatively narrow molecular weight distributions (MWDs = 1.1-1.5) which depend on the reaction temperature. End groups of the produced polypeptide are studied in detail by MALDI-ToF MS, IH-NMR, 13C-NMR, IH-1H COSY and IH-13C HMQC analyses. The results indicate that α-hydroxy-ω-aminotelechelic polypeptides are formed which are suitable for post- polymerization functionalization.
基金Project supported by Jiangsu Key Laboratory for the Environment Functional Materialsthe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Innovation Program for Graduate Students of USTS(SKCX11S-058)
文摘Complexes of lanthanide trisborohydrides, formally Ln(BH4)3(THF), (Ln=La, Ce, Sm, Yb), were synthesized and their catalytic activity for polymerization of ε-caprolactone was studied. All the complexes can catalyze this polymerization. It was found that the catalytic activities decreased in the order of La〉Ce〉Sm〉Yb. The crystal structure of cerium trisborohydride was determined for the first time by single crystal X-ray diffraction analysis. It is an ionic pair complex of [Ce(BH4)E(THF)5][Ce(BH4)4(THF)2]. The cationic part involves two ηa-BH4 ligands, while the anionic part involves two η3-BH4 groups and two η2-BH4 groups.
基金H.S.acknowledges the Guangdong-Hong Kong-Macao Joint Laboratory (Grant No.2019B121205001),Macao Sci-ence and Technology Development Fund (FDCT) (Project No.0098/2020/A2),National Key Research and Development Program (No.2022YFE0206400),Natural Science Foundation of Guang-dong Province (No.2023A1515010765)and FDCT-MOST joint project (Grant No.0026/2022/AMJ)for funding.We also acknowl-edge the support of the National Natural Science Foundation of China (Grant No.52104309)Natural Science Foundation of Hubei Province (No.2021CFB011)+1 种基金“Macao Young Scholars Program”China (No.AM2020004)FDCT Funding Scheme for Postdoctoral Researchers (No.0026/APD/2021).
文摘LiBH_(4) and Mg(BH_(4))_(2) with high theoretical hydrogen mass capacity receive significant attentions for hy-drogen storage.Also,these compounds can be potentially applied as solid-state electrolytes with their high ionic conductivity.However,their applications are hindered by the poor kinetics and reversibility for hydrogen storage and low ionic conductivity at room temperature,respectively.To address these challenges,effective strategies towards engineering the hydrogen storage properties and the emerging solid-state electrolytes with improved performances have been summarized.The focuses are on the state-of-the-art developments of Li/Mg-based borohydrides with a parallel comparison of similar methods ap-plied in both hydrogen storage and solid-state electrolytes,particularly on the phase,structure,and thermal properties changes of Li/Mg-based borohydrides induced by milling,ion substitution,coordination,adding additives/catalysts,and hydrides.The similarities and differences between the strategies towards two kinds of applications are also discussed and prospected.The review will shed light on the future development of Li/Mg-based borohydrides for hydrogen storage and solid-state electrolytes.
基金the support of the National Natural Science Foundation of China(51971146,51971147,52171218 and 52271222)the Shanghai Municipal Science and Technology Commission(21010503100)+3 种基金the Major Program for the Scientific Research Innovation Plan of Shanghai Education Commission(2019-01-07-00-07E00015)the Shanghai Outstanding Academic Leaders Plan,the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology,201017-K)the Shanghai Rising-Star Program(20QA1407100)the General Program of Natural Science Foundation of Shanghai(20ZR1438400)
文摘Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells.
基金This work was financially supported by the National Key R&D Program of China(2018YFB1502101)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(NSFC51621001)+2 种基金National Natural Science Foundation of China Projects(51771075)Natural Science Foundation of Guangdong Province of China(2016A030312011)Z.L.acknowledges the funding support from the Australian Research Council(ARC Discovery Projects,DP180102976 and DP210103539).
文摘As an environmentally friendly and high-density energy carrier,hydrogen has been recognized as one of the ideal alternatives for fossil fuels.One of the major challenges faced by“hydrogen economy”is the development of efficient,low-cost,safe and selective hydrogen generation from chemical storage materials.In this review,we summarize the recent advances in hydrogen production via hydrolysis and alcoholysis of light-metal-based materials,such as borohydrides,Mg-based and Al-based materials,and the highly efficient regeneration of borohydrides.Unfortunately,most of these hydrolysable materials are still plagued by sluggish kinetics and low hydrogen yield.While a number of strategies including catalysis,alloying,solution modification,and ball milling have been developed to overcome these drawbacks,the high costs required for the“one-pass”utilization of hydrolysis/alcoholysis systems have ultimately made these techniques almost impossible for practical large-scale applications.Therefore,it is imperative to develop low-cost material systems based on abundant resources and effective recycling technologies of spent fuels for efficient transport,production and storage of hydrogen in a fuel cell-based hydrogen economy.
基金supported by the Danish Council for Strategic Research via HyFillFast
文摘In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to prove experimentally the mutual destabilization between LiBH4 and Mg2NiH4.A detailed account of the kinetic and thermodynamic features of the dehydrogenation process is reported here.
基金Project(50834003)supported by the National Natural Science Foundation of ChinaProject(09JK561)supported by Educational Commission of Shaanxi Province of China
文摘High dispersive copper nanoparticles were prepared by chemical reduction method using potassium borohydride as reducing agent.The effects of reactant ratio,concentration of CuSO4,reaction temperature,and dispersant on the size of product and conversion rate were studied.The morphologies of copper nanoparticles were characterized by scanning electron microscopy.The results show that the optimum process conditions are as follows:the molar ratio of KBH4 to CuSO4 is 0.75(3:4),concentration of CuSO4 is 0.4 mol/L,reaction temperature is 30℃,and dispersant is n-butyl alcohol.The average particles size of copper powders with spherical shape gained is about 100 nm.
基金part of the activities of SCCER HeE, which is financially supported by Innosuisse – Swiss Innovation Agency
文摘Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a lower activation energy. The combination of borohydride and IL is very easy to realize and no expensive rare earth metals are required. The composite of the ILs with complex hydrides decreases the enthalpy and activation energy for the hydrogen desorption. The Coulomb interaction between borohydride and IL leads to a destabilization of the materials with a significantly lower enthalpy for hydrogen desorption. Here, we report a simple ion exchange reaction using various ILs, such as vinylbenzyltrimethylammonium chloride([VBTMA][Cl]), 1-butyl-3-methylimidazolium chloride([bmim][Cl]), and 1-ethyl-1-methylpyrrolidinium bromide([EMPY][Br]) with NaBH4 to decrease the hydrogen desorption temperature. Dehydrogenation of 1-butyl-3-methylimidazolium borohydride([bmim][BH4]) starts below 100℃. The quantity of desorbed hydrogen ranges between 2.4 wt% and 2.9 wt%, which is close to the theoretical content of hydrogen. The improvement in dehydrogenation is due to the strong amine cation that destabilizes borohydride by charge transfer.
基金supported by the Key Project of Chinese Ministry of Education (No. 208076)Shandong Provincial Natural Science Foundation,China (No. ZR2010EM069)the Open Project of State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology
文摘Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.
文摘Lanthanide borohydrides Ln(BH_4)_3(THF)_3 (Ln=Yb, Er), prepared from LnCl_3 and NaBH_4 in THF, were characterized by elemental analysis, infrared spectrum and X-ray diffraction analysis. Yb(BH_4)_3(THF)_3 and Er(BH_4)_3(THF)_3 are isostructural. Each complex contains two η3-BH_4 ligands, an η2-BH_4 ligand and three THF molecules in a distorted octahedron centered about the lanthanide atom. The three B atoms in a complex are coplanar with the lanthanide atom, and the two η3-BH_4 ligands lie opposite to each other.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y405496) the State Key Development Program for Basic Research of China (2007CB216409)
文摘Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.
文摘The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.
基金National Natural Science Foundation of China(No.20336010)National Basic Research Programme of China(No.2003CB716008)
文摘Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application of ILs as the potential green solvent for a wide variety of synthetic processes is an area of intense researches. High yield, high selectivity, and good catalytic charac-teristics have usually been achieved. After the isolation of products, ILs can usually be recovered and recycled many times by simple treating procedures, such as, filtration, extraction, and dryness.
基金supports for this work by Shahid Chamran University Research Council
文摘Nanoparticles have properties that can be fine-tuned by their size as well as shape.Hence,there is significant current interest in preparing nano-materials of small size dispersity and to arrange them in close-packed aggregates.This letter describes a way of synthesising silver nanoparticles and their protection to aggregate by silica gel.The combination of catalytic quantities of immobilized silver nanoparticles with reductive ability of NaBH_4 efficiently reduces aromatic nitroarenes to the corresponding amines in aqueous medium.Noteworthy is that highly chemoselective reactions were achieved in the presence of other functional groups such as halogen and carboxylic acid groups.The silver particles immobilized on silica gel are stable in the presence of oxygen for several months.
基金Beijing Municipal Science and Technology Commission(Z17110000091702).
文摘Two new hydrogen storage compounds,Na Zn(BH4)3·en and Na Zn(BH4)3·2en(en=ethylene diamine)are synthesized by a solution method.They can release 6.4 wt%and 6.3 wt%pure hydrogen below 200℃,respectively,demonstrating the potential to be used as hydrogen carriers.Additionally,their dehydrogenation products,thermodynamics and kinetics are well characterized and analyzed.Results shows that the stronger Zn-N interactions and the Hδ+–Hδ-interactions are significant for their stability below 100℃,relatively low decomposition temperatures and elimination of gas impurities.
文摘PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to Prof. R.A. Varin
文摘The mixture of(2NaBH4+ MnCl2) was ball milled in a magneto-mill. No gas release was detected. The XRD patterns of the ball milled mixture exhibit only the Bragg diffraction peaks of the Na Cl-type salt which on the basis of the present X-ray diffraction results and the literature is likely to be a solid solution Na(Cl)x(BH4)(1-x), possessing a cubic Na Cl-type crystalline structure. No presence of any crystalline hydride was detected by powder X-ray diffraction which clearly shows that NaBH4in the initial mixture must have reacted with MnCl2forming a Na Cl-type by-product and another hydride that does not exhibit X-ray Bragg diffraction peaks. Mass spectrometry(MS) of gas released from the ball milled mixture during combined MS/thermogravimetric analysis(TGA)/differential scanning calorimetry(DSC) experiments, confirms mainly hydrogen(H2) with a small quantity of diborane gas, B2H6. The Fourier transform infra-red(FT-IR) spectrum of the ball milled(2NaBH4+ MnCl2) is quite similar to the FT-IR spectrum of crystalline manganese borohydride, c-Mn(BH4)2, synthesized by ball milling, which strongly suggests that the amorphous hydride mechano-chemically synthesized during ball milling could be an amorphous manganese borohydride. Remarkably, the process of solvent filtration and extraction at 42 °C, resulted in the transformation of mechano-chemically synthesized amorphous manganese borohydride to a nanostructured,crystalline, c-Mn(BH4)2hydride.
基金The project was supported by the FAPESP(2014/09087-4,2014/50279-4).
文摘The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.
基金support of this work from the Research Council of Mazandaran University gratefully acknowledged.
文摘A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of aliphatic and aromatic aldehydes,ketones and amines when mixed with NaBH;/silica chloride at room temperature,afforded excellent yield of the corresponding amines.