Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pos...Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pose ongoing challenges.Herein,we systematically explore the synergistic catalytic effect of incorporating Au with boron clusters for accelerating NRR kinetics.An in-situ abinitio strategy is employed to construct B-doped Au nanoparticles(2-6 nm in diameter)loaded on BO_(x) substrates(AuBO_(x)),in which B not only modulates the surface electronic structure of Au but also forms strong coupling interactions to stabilize the nanoparticles.The electrochemical results show that Au-BO_(x) possesses excellent NRR activity(NH_(3) yield of 48.52μg h^(-1)mg_(cat)^(-1),Faraday efficiency of 56.18%),and exhibits high stability and reproducibility throughout the electrocatalytic NRR process.Theoretical calculations reveal that the introduction of B induces the formation of both Au dangling bond and Au-B coupling bond.which considerably facilitates the hydrogenation of~*N_(2)^(-)~*NH_(3).The present work provides a new avenue for the preparation of metal-boron materials achieved by one-step reduction and doping process,utilizing boron clusters as reducing and stabilizing agents.展开更多
The geometrical structures, relative stabilities, electronic and magnetic properties of small BnAl-(2〈n〈9)clusters are systematicalyy investigated by using the first-principles density functional theory. The resul...The geometrical structures, relative stabilities, electronic and magnetic properties of small BnAl-(2〈n〈9)clusters are systematicalyy investigated by using the first-principles density functional theory. The results show that the A1 atom prefers to reside either on the outer-side or above the surface, but not in the centre of the clusters in all of the most stable BnAl-(2〈n〈9) isomers and the one excess electron is strong enough to modify the geometries of some specific sizes of the neutral clusters. All the results of the analysis for the fragmentation energies, the second-order difference of energies, and the highest occupied-lowest unoccupied molecular orbital energy gaps show that B4A1- and B8A1- clusters each have a higher relative stability. Especially, the BsA1-cluster has the most enhanced chemical stability. Furthermore, both the local magnetic moments and the total magnetic moments display a pronounced oddeven oscillation with the number of boron atoms, and the magnetic effects arise mainly from the boron atoms except for the B7A1- and BgA1- clusters.展开更多
The thermal stability and bonding characteristics of the larger boron clusters B n and their corresponding boranes with T d , O h or I h symmetries were studied by means of ab initio...The thermal stability and bonding characteristics of the larger boron clusters B n and their corresponding boranes with T d , O h or I h symmetries were studied by means of ab initio method. The results obtained from the calculation show that the clusters and boranes are all thermally stable to a different extent. The number of the skeletal bonding orbitals of B n H 2- n satisfies the Wades rule, but this kind of clusters need not be a complete triangular face polyhedron. The results also indicate that the larger neutral boranes B n H n may exist.展开更多
Four isomers of the three-dimensionally connected bare boron cationic cluster B were investigated by using ab initio molecular orbital theory at the HF/6-31G level. The results show that the D5h symmetric isomer of B ...Four isomers of the three-dimensionally connected bare boron cationic cluster B were investigated by using ab initio molecular orbital theory at the HF/6-31G level. The results show that the D5h symmetric isomer of B is a possible isomer candidate of its stable geometries with closed structure.展开更多
Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clus...Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clusters. The corresponding studies not only have been restricted to the search for the geometrical structures of clusters, but also have promoted the development of cluster-assembled materials as the building blocks. The CALYPSO cluster prediction method combined with other computational techniques have significantly stimulated the development of the cluster-based nanomaterials. In this review, we will summarize some good cases of cluster structure by CALYPSO method, which have also been successfully identified by the photoelectron spectra experiments. Beginning with the alkali-metal clusters, which serve as benchmarks, a series of studies are performed on the size-dependent elemental clusters which possess relatively high stability and interesting chemical physical properties. Special attentions are paid to the boron-based clusters because of their promising applications. The NbSi12 and BeB16 clusters, for example, are two classic representatives of the silicon-and boron-based clusters, which can be viewed as building blocks of nanotubes and borophene. This review offers a detailed description of the structural evolutions and electronic properties of medium-sized pure and doped clusters, which will advance fundamental knowledge of cluster-based nanomaterials and provide valuable information for further theoretical and experimental studies.展开更多
The effects of ion doses on the properties of boron implanted Si for n-type solar cell application were investigated with doses ranging from 5×10^14cm^-2 to 2×10^15cm^-2 and a subsequent two-step annealing p...The effects of ion doses on the properties of boron implanted Si for n-type solar cell application were investigated with doses ranging from 5×10^14cm^-2 to 2×10^15cm^-2 and a subsequent two-step annealing process in a tube furnace.With the help of the TCAD process simulation tool, knowledge on diffusion kinetics of dopants and damage evolution was obtained by fitting SIMS measured boron profiles. Due to insufficient elimination of the residual damage, the implanted emitter was found to have a higher saturation current density(J0e) and a poorer crystallographic quality. Consistent with this observation, V oc, J sc, and the efficiency of the all-implanted p^+–n–n^+solar cells followed a decreasing trend with an increase of the implantation dose. The obtained maximum efficiency was 19.59% at a low dose of 5×10^14cm^-2. The main efficiency loss under high doses came not only from increased recombination of carriers in the space charge region revealed by double-diode parameters of dark I–V curves, but also from the degraded minority carrier diffusion length in the emitter and base evidenced by IQE data. These experimental results indicated that clusters and dislocation loops had appeared at high implantation doses, which acted as effective recombination centers for photogenerated carriers.展开更多
本文采用量子化学密度泛函理论的B3LYP/6-31G*方法,对C24和B12N12团簇的12种异构体进行了优化,并对它们的几何构型、振动频率、核独立化学位移(NICS)和结合能进行了理论探讨, 比较了C24和B12N12团簇结构的稳定性。研究表明:C24团簇的最...本文采用量子化学密度泛函理论的B3LYP/6-31G*方法,对C24和B12N12团簇的12种异构体进行了优化,并对它们的几何构型、振动频率、核独立化学位移(NICS)和结合能进行了理论探讨, 比较了C24和B12N12团簇结构的稳定性。研究表明:C24团簇的最稳定几何构型为类石墨结构d,B12N12团簇的最稳定结构为4/6笼状结构g。C24异构体的稳定性大小顺序为d > b > f > c > a > e。B12N12团簇异构体稳定性大小顺序为a > f> c> d > e >b。展开更多
While rare-earth borides represent a class of important materials in modern industries,there are few fundamental researches on their electronic structures and physicochemical properties.Recently,we have performed comb...While rare-earth borides represent a class of important materials in modern industries,there are few fundamental researches on their electronic structures and physicochemical properties.Recently,we have performed combined experimental and theoretical studies on rare-earth boron clusters and their cluster-assembled complexes,revealing a series of rare-earth inverse sandwich clusters with fascinating electronic structures and chemical bonding patterns.In this overview article,we summarize recent progresses in this area and provide a perspective view on the future development of rare-earth boride clusters.Understanding the electronic structures of these clusters helps to design materials of f-element(lanthanide and actinide)borides with critical physiochemical properties.展开更多
基金supported by the National Natural Science Foundation of China(22075133,62288102,22375091,21971114,and 21701086)the Jiangsu Provincial Funds(BX2022013)。
文摘Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pose ongoing challenges.Herein,we systematically explore the synergistic catalytic effect of incorporating Au with boron clusters for accelerating NRR kinetics.An in-situ abinitio strategy is employed to construct B-doped Au nanoparticles(2-6 nm in diameter)loaded on BO_(x) substrates(AuBO_(x)),in which B not only modulates the surface electronic structure of Au but also forms strong coupling interactions to stabilize the nanoparticles.The electrochemical results show that Au-BO_(x) possesses excellent NRR activity(NH_(3) yield of 48.52μg h^(-1)mg_(cat)^(-1),Faraday efficiency of 56.18%),and exhibits high stability and reproducibility throughout the electrocatalytic NRR process.Theoretical calculations reveal that the introduction of B induces the formation of both Au dangling bond and Au-B coupling bond.which considerably facilitates the hydrogenation of~*N_(2)^(-)~*NH_(3).The present work provides a new avenue for the preparation of metal-boron materials achieved by one-step reduction and doping process,utilizing boron clusters as reducing and stabilizing agents.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974139 and 10964002) the Doctoral Program Foundation of the Institution of Higher Education of China (Grant No. 20050610010)
文摘The geometrical structures, relative stabilities, electronic and magnetic properties of small BnAl-(2〈n〈9)clusters are systematicalyy investigated by using the first-principles density functional theory. The results show that the A1 atom prefers to reside either on the outer-side or above the surface, but not in the centre of the clusters in all of the most stable BnAl-(2〈n〈9) isomers and the one excess electron is strong enough to modify the geometries of some specific sizes of the neutral clusters. All the results of the analysis for the fragmentation energies, the second-order difference of energies, and the highest occupied-lowest unoccupied molecular orbital energy gaps show that B4A1- and B8A1- clusters each have a higher relative stability. Especially, the BsA1-cluster has the most enhanced chemical stability. Furthermore, both the local magnetic moments and the total magnetic moments display a pronounced oddeven oscillation with the number of boron atoms, and the magnetic effects arise mainly from the boron atoms except for the B7A1- and BgA1- clusters.
文摘The thermal stability and bonding characteristics of the larger boron clusters B n and their corresponding boranes with T d , O h or I h symmetries were studied by means of ab initio method. The results obtained from the calculation show that the clusters and boranes are all thermally stable to a different extent. The number of the skeletal bonding orbitals of B n H 2- n satisfies the Wades rule, but this kind of clusters need not be a complete triangular face polyhedron. The results also indicate that the larger neutral boranes B n H n may exist.
文摘Four isomers of the three-dimensionally connected bare boron cationic cluster B were investigated by using ab initio molecular orbital theory at the HF/6-31G level. The results show that the D5h symmetric isomer of B is a possible isomer candidate of its stable geometries with closed structure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1804121 and 11304167)
文摘Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clusters. The corresponding studies not only have been restricted to the search for the geometrical structures of clusters, but also have promoted the development of cluster-assembled materials as the building blocks. The CALYPSO cluster prediction method combined with other computational techniques have significantly stimulated the development of the cluster-based nanomaterials. In this review, we will summarize some good cases of cluster structure by CALYPSO method, which have also been successfully identified by the photoelectron spectra experiments. Beginning with the alkali-metal clusters, which serve as benchmarks, a series of studies are performed on the size-dependent elemental clusters which possess relatively high stability and interesting chemical physical properties. Special attentions are paid to the boron-based clusters because of their promising applications. The NbSi12 and BeB16 clusters, for example, are two classic representatives of the silicon-and boron-based clusters, which can be viewed as building blocks of nanotubes and borophene. This review offers a detailed description of the structural evolutions and electronic properties of medium-sized pure and doped clusters, which will advance fundamental knowledge of cluster-based nanomaterials and provide valuable information for further theoretical and experimental studies.
基金supported by the National Natural Science Foundation of China(Grant Nos.61275040,60976046,and 61021003)the National Basic Research Program of China(Grant No.2012CB934200)
文摘The effects of ion doses on the properties of boron implanted Si for n-type solar cell application were investigated with doses ranging from 5×10^14cm^-2 to 2×10^15cm^-2 and a subsequent two-step annealing process in a tube furnace.With the help of the TCAD process simulation tool, knowledge on diffusion kinetics of dopants and damage evolution was obtained by fitting SIMS measured boron profiles. Due to insufficient elimination of the residual damage, the implanted emitter was found to have a higher saturation current density(J0e) and a poorer crystallographic quality. Consistent with this observation, V oc, J sc, and the efficiency of the all-implanted p^+–n–n^+solar cells followed a decreasing trend with an increase of the implantation dose. The obtained maximum efficiency was 19.59% at a low dose of 5×10^14cm^-2. The main efficiency loss under high doses came not only from increased recombination of carriers in the space charge region revealed by double-diode parameters of dark I–V curves, but also from the degraded minority carrier diffusion length in the emitter and base evidenced by IQE data. These experimental results indicated that clusters and dislocation loops had appeared at high implantation doses, which acted as effective recombination centers for photogenerated carriers.
基金supported by the National Basic Research 973 Pre-research Program of China (2010CB635110)Natural Science Foundation of Shanxi Province,China (2010011012-2)~~
文摘本文采用量子化学密度泛函理论的B3LYP/6-31G*方法,对C24和B12N12团簇的12种异构体进行了优化,并对它们的几何构型、振动频率、核独立化学位移(NICS)和结合能进行了理论探讨, 比较了C24和B12N12团簇结构的稳定性。研究表明:C24团簇的最稳定几何构型为类石墨结构d,B12N12团簇的最稳定结构为4/6笼状结构g。C24异构体的稳定性大小顺序为d > b > f > c > a > e。B12N12团簇异构体稳定性大小顺序为a > f> c> d > e >b。
基金financially supported by the National Natural Science Foundation of China (No. 9164520321433005 and 21590792)Brown University was supported by the U.S. National Science Foundation (CHE-1763380)The support of Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002) is also acknowledged。
文摘While rare-earth borides represent a class of important materials in modern industries,there are few fundamental researches on their electronic structures and physicochemical properties.Recently,we have performed combined experimental and theoretical studies on rare-earth boron clusters and their cluster-assembled complexes,revealing a series of rare-earth inverse sandwich clusters with fascinating electronic structures and chemical bonding patterns.In this overview article,we summarize recent progresses in this area and provide a perspective view on the future development of rare-earth boride clusters.Understanding the electronic structures of these clusters helps to design materials of f-element(lanthanide and actinide)borides with critical physiochemical properties.