The small molecular second near-infrared(NIR-Ⅱ, 1000–1700 nm) dye-based nanotheranostics can concurrently combine deep-tissue photodiagnosis with in situ phototherapy, which occupies a vital position in the early de...The small molecular second near-infrared(NIR-Ⅱ, 1000–1700 nm) dye-based nanotheranostics can concurrently combine deep-tissue photodiagnosis with in situ phototherapy, which occupies a vital position in the early detection and precise treatment of tumors. However, the development of small molecular NIR-Ⅱ dyes is still challenging due to the limited electron acceptors and cumbersome synthetic routes.Herein, we report a novel molecular electron acceptor, boron difluoride formazanate(BDF). Based on BDF, a new small molecular NIR-Ⅱ dye BDF1005 is designed and synthesized with strong NIR-I absorption at 768 nm and bright NIR-Ⅱ peak emission at 1034 nm. In vitro and in vivo experiments demonstrate that BDF1005-based nanotheranostics can be applied for NIR-Ⅱ fluorescence imaging-guided photothermal therapy of 4T1 tumor-bearing mice. Under 808 nm laser irradiation, tumor growth can be effectively inhibited. This work opens up a new road for the exploitation of NIR-Ⅱ small molecular dyes for cancer phototheranostics.展开更多
The widespread use of high-dose antibiotics will not only lead to the rapid acquisition of antibiotic resistance and increased incidence of drug-resistant bacterial infections, but also produce toxic side effects on n...The widespread use of high-dose antibiotics will not only lead to the rapid acquisition of antibiotic resistance and increased incidence of drug-resistant bacterial infections, but also produce toxic side effects on normal tissues. Herein, two near-infrared dyes BDP-4PTZ and BDP-4DPA were synthesized, and the electron donors of diphenylamine and phenothiazine with the only difference of sulphur(S)-lock between the two phenyl rings were introduced onto the electron acceptor aza-dipyrromethene boron difluoride(aza-BODIPY) through molecular surgery. Through co-precipitation into nanoparticles(NPs), BDP-4PTZ NPs and BDP-4DPA NPs were fabricated with good biocompatibility. Upon 660 nm photoirradiation, BDP-4PTZ NPs and BDP-4DPA NPs showed excellent photothermal conversion efficiency(43% and 50%, respectively) and reactive oxygen species(ROS) production performance(ca. 3.6 and 6 times higher than that of indocyanine green, respectively). In vitro antibacterial experiments indicated that both NPs could effectively destroy the bacteria’s membrane to eradicate drug-resistant bacteria. Furthermore, the bacterial abscess was effectively eliminated after treatment with BDP-4DPA NPs under 660 nm photoirradiation without adverse effects. Thus, through molecular surgery, BDP-4DPA without the S-lock demonstrates synergistic photothermal and photodynamic antimicrobial activities, which is promising for further molecular design towards effective neo-antimicrobial phototherapy.展开更多
基金supported by the National Natural Science Foundation of China (No. 61775095)Natural Science Foundation of Jiangsu Province (No. BK20200092)+3 种基金Jiangsu Province Policy Guidance Plan (No. BZ2019014)Natural Science Foundation of Shandong Province (No. ZR2020KB018)‘Taishan scholars’ construction special fund of Shandong Provincethe High-Performance Computing Center in Nanjing Tech University for supporting the computational resources
文摘The small molecular second near-infrared(NIR-Ⅱ, 1000–1700 nm) dye-based nanotheranostics can concurrently combine deep-tissue photodiagnosis with in situ phototherapy, which occupies a vital position in the early detection and precise treatment of tumors. However, the development of small molecular NIR-Ⅱ dyes is still challenging due to the limited electron acceptors and cumbersome synthetic routes.Herein, we report a novel molecular electron acceptor, boron difluoride formazanate(BDF). Based on BDF, a new small molecular NIR-Ⅱ dye BDF1005 is designed and synthesized with strong NIR-I absorption at 768 nm and bright NIR-Ⅱ peak emission at 1034 nm. In vitro and in vivo experiments demonstrate that BDF1005-based nanotheranostics can be applied for NIR-Ⅱ fluorescence imaging-guided photothermal therapy of 4T1 tumor-bearing mice. Under 808 nm laser irradiation, tumor growth can be effectively inhibited. This work opens up a new road for the exploitation of NIR-Ⅱ small molecular dyes for cancer phototheranostics.
基金This work was supported by the the Natural Science Foundation of Jiangsu Province,China(Nos.BK20200092,BK20200710).
文摘The widespread use of high-dose antibiotics will not only lead to the rapid acquisition of antibiotic resistance and increased incidence of drug-resistant bacterial infections, but also produce toxic side effects on normal tissues. Herein, two near-infrared dyes BDP-4PTZ and BDP-4DPA were synthesized, and the electron donors of diphenylamine and phenothiazine with the only difference of sulphur(S)-lock between the two phenyl rings were introduced onto the electron acceptor aza-dipyrromethene boron difluoride(aza-BODIPY) through molecular surgery. Through co-precipitation into nanoparticles(NPs), BDP-4PTZ NPs and BDP-4DPA NPs were fabricated with good biocompatibility. Upon 660 nm photoirradiation, BDP-4PTZ NPs and BDP-4DPA NPs showed excellent photothermal conversion efficiency(43% and 50%, respectively) and reactive oxygen species(ROS) production performance(ca. 3.6 and 6 times higher than that of indocyanine green, respectively). In vitro antibacterial experiments indicated that both NPs could effectively destroy the bacteria’s membrane to eradicate drug-resistant bacteria. Furthermore, the bacterial abscess was effectively eliminated after treatment with BDP-4DPA NPs under 660 nm photoirradiation without adverse effects. Thus, through molecular surgery, BDP-4DPA without the S-lock demonstrates synergistic photothermal and photodynamic antimicrobial activities, which is promising for further molecular design towards effective neo-antimicrobial phototherapy.