期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Thermodynamic Analysis of Chemical Vapor Deposition of BCl_3-NH_3-SiCl_4-H_2-Ar System
1
作者 李赞 CHENG Laifei +1 位作者 刘永胜 YE Fang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期951-958,共8页
The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reacta... The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reactants, deposition temperature and total pressure) on the distribution regions of solid phase products were analyzed based on the diagrams. The results show that:(a) Solid phase products are mainly affected by deposition temperature. The area of BN+Si3N4 phase increases with the temperature rising from 650 to 900 ℃, and decreases with the temperature rising from 900 to 1 200 ℃;(b) When temperature and total pressure are constants, BN+Si3N4 phase exists at a high partial pressure of NH3;(c) The effect of total system pressure is correlated to deposition temperature. The temperature ranging from 700 to 900 ℃ under low total pressure is the optimum condition for the deposition.(d) Appropriate kinetic parameters can be determined based on the results of thermodynamic calculation. Si–B–N coating is obtained via low pressure chemical vapor deposition. The analysis by X-ray photoelectron spectroscopy indicates that B–N and Si–N are the main chemical bonds of the coating. 展开更多
关键词 boron trichloride-ammonia-silicon tetrachloride-hydrogen-argon system thermodynamic phase stability area diagram chemical vapor deposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部