期刊文献+
共找到512篇文章
< 1 2 26 >
每页显示 20 50 100
10B-doped MCP detector developed for neutron resonance imaging at Back-n white neutron source
1
作者 Qiang Li Li‑Jiao Wang +70 位作者 Jing‑Yu Tang Xiang‑Biao Qiu Zhen Chen Mao‑Yuan Zhao Chang‑Jun Ning Kai Pan Wei Xu Tao Li Su‑Peng Lu Han Yi Rui‑Rui Fan Chang‑Qing Feng Rong Zhang Xiao‑Yang Sun Qi An Hao‑Fan Bai Jiang‑Bo Bai Jie Bao Ping Cao Qi‑Ping Chen Yong‑Hao Chen Zeng‑Qi Cui An‑Chuan Fan Fan‑Zhen Feng Min‑Hao Gu Chang‑Cai Han Zi‑Jie Han Guo‑Zhu He Yong‑Cheng He Yang Hong Yi‑Wei Hu Han‑Xiong Huang Wei Jiang Zhi‑Jie Jiang Zheng‑Yao Jin Ling Kang Bo Li Gong Li Xiao Li Yang Li Jie Liu Rong Liu Shu‑Bin Liu Yi‑Na Liu Guang‑Yuan Luan Jie Ren Zhi‑Zhou Ren Xi‑Chao Ruan Zhao‑Hui Song Kang Sun Zhi‑Xin Tan Sheng‑Da Tang Jin‑Cheng Wang Peng‑Cheng Wang Zhao‑Hui Wang Zhong‑Wei Wen Xiao‑Guang Wu Xuan Wu Cong Xia Yong‑Ji Yu Guo‑Hui Zhang Hang‑Chang Zhang Lin‑Hao Zhang Qi‑Wei Zhang Xian‑Peng Zhang Yu‑Liang Zhang Yue Zhang Zhi‑Yong Zhang Zhi‑Hao Zhou Ke‑Jun Zhu Chong Zou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期58-68,共11页
Neutron resonance imaging(NRI)has recently emerged as an appealing technique for neutron radiography.Its complexity surpasses that of conventional transmission imaging,as it requires a high demand for both a neutron s... Neutron resonance imaging(NRI)has recently emerged as an appealing technique for neutron radiography.Its complexity surpasses that of conventional transmission imaging,as it requires a high demand for both a neutron source and detector.Consequently,the progression of NRI technology has been sluggish since its inception in the 1980s,particularly considering the limited studies analyzing the neutron energy range above keV.The white neutron source(Back-n)at the China Spallation Neutron Source(CSNS)provides favorable beam conditions for the development of the NRI technique over a wide neutron energy range from eV to MeV.Neutron-sensitive microchannel plates(MCP)have emerged as a cutting-edge tool in the field of neutron detection owing to their high temporal and spatial resolutions,high detection efficiency,and low noise.In this study,we report the development of a 10B-doped MCP detector,along with its associated electronics,data processing system,and NRI experiments at the Back-n.Individual heavy elements such as gold,silver,tungsten,and indium can be easily identified in the transmission images by their characteristic resonance peaks in the 1–100 eV energy range;the more difficult medium-weight elements such as iron,copper,and aluminum with resonance peaks in the 1–100 keV energy range can also be identified.In particular,results in the neutron energy range of dozens of keV(Aluminum)are reported here for the first time. 展开更多
关键词 neutron resonance imaging 10B doped MCP detector White neutron source Sample nuclide identification
下载PDF
Study on the gamma rays and neutrons energy response optimization of a scintillating fiber detector for EAST with Geant4 被引量:3
2
作者 Wei-Kun Chen Li-Qun Hu +4 位作者 Guo-Qiang Zhong Rui-Jie Zhou Bing Hong Qiang Li Li Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第9期40-49,共10页
A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron... A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron yield with time resolution.In this study,Geant4 simulations were used to obtain the pulse height spectra for ideal signals produced when detecting neutrons and gamma rays of multiple energies.One of the main sources of interference was found to be low-energy neutrons below 10–5 MeV,which can generate numerous secondary particles in the detector components,such as the magnetic shielding tube,leading to high-amplitude output signals.To address this issue,a compact thermal neutron shield containing a 1-mm Cd layer outside the magnetic shielding tube and a 5-mm inner Pb layer was specifically designed.Adverse effects on the measurement of fast neutrons and the shielding effect on gamma rays were considered.This can suppress the height of the signals caused by thermal neutrons to a level below the height corresponding to neutrons above 4 MeV because the yield of the latter is used for detector calibration.In addition,the detector has relatively flat sensitivity curves in the fast neutron region,with the intrinsic detection efficiencies(IDEs)of approximately 40%.For gamma rays with energies that are not too high(<8 MeV),the IDEs of the detector are only approximately 20%,whereas for gamma rays below 1 MeV,the response curve cuts off earlier in the low-energy region,which is beneficial for avoiding counting saturation and signal accumulation. 展开更多
关键词 Sci-Fi detector D–T fusion neutron Thermal neutron shield Energy response GEANT4
下载PDF
Twin model-based fault detection and tolerance approach for in-core self-powered neutron detectors 被引量:1
3
作者 Jing Chen Yan-Zhen Lu +2 位作者 Hao Jiang Wei-Qing Lin Yong Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期86-99,共14页
The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SP... The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model. 展开更多
关键词 Self-powered neutron detector Twin model Fault detection Fault tolerance Generalized regression neural network Nuclear power plant
下载PDF
Silicon photomultiplier based scintillator thermal neutron detector for China Spallation Neutron Source(CSNS) 被引量:1
4
作者 岳秀萍 朱志甫 +11 位作者 唐彬 黄畅 于潜 陈少佳 王修库 许虹 周诗慧 蔡小杰 杨浩 万志勇 孙志嘉 刘云涛 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期35-41,共7页
The energy-resolved neutron imaging spectrometer(ERNI)will be installed in 2022 according to the spectrometer construction plan of the China Spallation Neutron Source(CSNS).The instrument requires neutron detectors wi... The energy-resolved neutron imaging spectrometer(ERNI)will be installed in 2022 according to the spectrometer construction plan of the China Spallation Neutron Source(CSNS).The instrument requires neutron detectors with the coverage area of approximately 4 m^(2)in 5°-170°neutron diffraction angle.The neutron detection efficiency needs to be better than 40%at 1 A neutron wavelength.The spatial resolution should be better than 3 mm×50 mm in the horizontal and vertical directions respectively.We develop a one-dimensional scintillator neutron detector which is composed of the^(6)Li F/Zn S(Ag)scintillation screens,the wavelength-shifting fiber(WLSF)array,the silicon photomultipliers(Si PMs),and the self-designed application-specific integrated circuit(ASIC)readout electronics.The pixel size of the detector is designed as 3 mm×50 mm,and the neutron-sensitive area is 50 mm×200 mm.The performance of the detector prototype is measured using neutron beam 20#of the CSNS.The maximum counting rate of 247 k Hz,and the detection efficiency of63%at 1.59 A are obtained.The test results show that the performance of the detector fulfills the physical requirements of the ERNI under construction at the CSNS. 展开更多
关键词 neutron detector silicon photomultipliers(SiPMs) ^(6)LiF/ZnS(Ag) China Spallation neutron Source(CSNS)
下载PDF
Fabrication of a single-crystal diamond neutron detector and its application in 14.1 MeV neutron detection in deuterium-tritium fusion experiments
5
作者 许平 余羿 周海洋 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第7期14-18,共5页
A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium-tritium(D-T)fusion neutrons.The size of its diamond film is 4.5 mm×4.5 mm×500μm.This film is sandwiched by a flat,strip-pattern... A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium-tritium(D-T)fusion neutrons.The size of its diamond film is 4.5 mm×4.5 mm×500μm.This film is sandwiched by a flat,strip-patterned gold electrode.The dark current of this detector is experimentally measured to be lower than 0.1 nA under an electric field of 30 kV cm^(-1).This diamond detector is used to measure D-T fusion neutrons with a flux of about 7.5×10^(5) s^(-1)cm^(-2).The pronounced peak with a central energy of 8.28 MeV characterizing the^(12)C(n,α)~9Be reaction in the neutron energy spectrum is experimentally diagnosed,and the energy resolution is better than 1.69%,which is the best result reported so far using a diamond detector.A clear peak with a central energy of 6.52 MeV characterizing the^(12)C(n,n')3αreaction is also identified with an energy resolution of better than 7.67%. 展开更多
关键词 neutron diagnostic deuterium-tritium neutron single-crystal diamond neutron detector
下载PDF
Performance optimization of scintillator neutron detectors for EMD in CSNS
6
作者 蔡小杰 于潜 +5 位作者 黄畅 唐彬 周诗慧 王小胡 岳秀萍 孙志嘉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期207-213,共7页
Chinese Spallation Neutron Source(CSNS) has successfully produced its first neutron beam in 28th August 2017. It has been running steadily from March, 2018. According to the construction plan, the engineering material... Chinese Spallation Neutron Source(CSNS) has successfully produced its first neutron beam in 28th August 2017. It has been running steadily from March, 2018. According to the construction plan, the engineering materials diffractometer(EMD) will be installed between 2019–2023. This instrument requires the neutron detectors with the cover area near3 m2in two 90° neutron diffraction angle positions, the neutron detecting efficiency is better than 40%@1A, and the spatial resolution is better than 4 mm×200 mm in horizontal and vertical directions respectively. We have developed a onedimensional position-sensitive neutron detector based on the oblique6Li F/Zn S(Ag) scintillators, wavelength shifting fibers,and Si PMs(silicon photomultipliers) readout. The inhomogeneity of the neutron detection efficiency between each pixel and each detector module, which caused by the inconsistency of the wave-length shifting fibers in collecting scintillation photons, needs to be mitigated before the installation. A performance optimization experiment of the detector modules was carried out on the BL20(beam line 20) of CSNS. Using water sample, the neutron beam with Φ5 mm exit hole was dispersed related evenly into the forward space. According to the neutron counts of each pixel of the detector module, the readout electronics threshold of each pixel is adjusted. Compared with the unadjusted detector module, the inhomogeneity of the detection efficiency for the adjusted one has been improved from 69% to 90%. The test result of the diffraction peak of the standard sample Si showed that the adjusted detector module works well. 展开更多
关键词 scintillator neutron detector silicon photomultipliers wavelength shifting fiber LiF/ZnS scintil-lator detection efficiency inhomogeneity
下载PDF
Performance optimization of the neutron-sensitive image intensifier used in neutron imaging
7
作者 谭金昊 宋玉收 +14 位作者 周健荣 杨文钦 蒋兴奋 刘杰 张超月 周晓娟 夏远光 刘术林 闫保军 刘辉 王松林 赵豫斌 庄建 孙志嘉 陈元柏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期380-387,共8页
As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive ima... As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive image intensifier has been developed and demonstrated to achieve good spatial resolution and timing resolution.However,the influence of the working voltage on the performance of the neutron-sensitive imaging intensifier has not been studied.To optimize the performance of the neutron-sensitive image intensifier at different voltages,experiments have been performed at the China Spallation Neutron Source(CSNS)neutron beamline.The change in the light yield and imaging quality with different voltages has been acquired.It is shown that the image quality benefits from the high gain of the microchannel plate(MCP)and the high accelerating electric field between the MCP and the screen.Increasing the accelerating electric field is more effective than increasing the gain of MCPs for the improvement of the imaging quality.Increasing the total gain of the MCP stack can be realized more effectively by improving the gain of the standard MCP than that of the n MCP.These results offer a development direction for image intensifiers in the future. 展开更多
关键词 neutron detector neutron imaging microchannel plate image intensifier
下载PDF
Simulation of GaN micro-structured neutron detectors for improving electrical properties 被引量:3
8
作者 Xin-Lei Geng Xiao-Chuan Xia +5 位作者 Huo-Lin Huang Zhong-Hao Sun He-Qiu Zhang Xing-Zhu Cui Xiao-Hua Liang Hong-Wei Liang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期414-419,共6页
Nowadays,the superior detection performance of semiconductor neutron detectors is a challenging task.In this paper,we deal with a novel GaN micro-structured neutron detector(GaN-MSND)and compare three different method... Nowadays,the superior detection performance of semiconductor neutron detectors is a challenging task.In this paper,we deal with a novel GaN micro-structured neutron detector(GaN-MSND)and compare three different methods such as the method of modulating the trench depth,the method of introducing dielectric layer and p-type inversion region to improve the width of depletion region(W).It is observed that the intensity of electric field can be modulated by scaling the trench depth.On the other hand,the electron blocking region is formed in the detector enveloped with a dielectric layer.Furthermore,the introducing of p-type inversion region produces new p/n junction,which not only promotes the further expansion of the depletion region but also reduces the intensity of electric field produced by main junction.It can be realized that all these methods can considerably enhance the working voltage as well as W.Of them,the improvement on W of GaN-MSND with the p-type inversion region is the most significant and the value of W could reach 12.8μm when the carrier concentration of p-type inversion region is 10^17 cm^-3.Consequently,the value of W is observed to improve 200%for the designed GaN-MSND as compared with that without additional design.This work ensures to the researchers and scientific community the fabrication of GaN-MSND having superior detection limit in the field of intense radiation. 展开更多
关键词 GAN micro-structured neutron detector depletion REGION ELECTRIC field
下载PDF
Investigation of enhancement in planar fast neutron detector efficiency with stacked structure using Geant4 被引量:2
9
作者 Shivang Tripathi Chandrakant Upadhyay +3 位作者 C. P. Nagaraj K. Devan A. Venkatesan K. Madhusoodanan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第11期154-163,共10页
Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proto... Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proton recoil detector was simulated, which consists of hydrogenous converter, i.e., high-density polyethylene(HDPE) for generating recoil protons by means of neutron elastic scattering(n, p) reaction and semiconductor material SiC, for generating a detectable electrical signal upon transport of recoil protons through it. SiC is considered in order to overcome the various factors associated with conventional Si-based devices such as operability in a harsh radiation environment, as often encountered in nuclear facilities. Converter layer thickness is optimized by considering 10~9 neutron events of different monoenergetic neutron sources as well as ^(241)Am-Be neutron spectrum. It is found that the optimized thickness for neutron energy range of 1–10 MeV is ~400 μm. However, the efficiency of fast neutron detection is estimated to be only 0.112%,which is considered very low for meaningful and reliable detection of neutrons. To overcome this problem, a stacked juxtaposition of converter layer between SiC layers has been analyzed in order to achieve high efficiency. It is noted that a tenfold efficiency improvement has been obtained—1.04% for 10 layers stacked configuration vis-à-vis 0.112% of single converter layer detector. Further simulation of the stacked detector with respect to variable converter thickness has been performed to achieve the efficiency as high as ~3.85% with up to 50 stacks. 展开更多
关键词 GEANT4 Fast neutron detector Silicon CARBIDE RECOIL PROTON Stacked detector
下载PDF
Calibration and performance of the neutron detector onboard of the DAMPE mission 被引量:2
10
作者 Yong-Yi Huang Tao Ma +5 位作者 Chuan Yue Yan Zhang Ming-Sheng Cai Jin Chang Tie-Kuang Dong Yong-Qiang Zhang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第9期335-342,共8页
The DArk Matter Particle Explorer(DAMPE),one of the four space-based scientific missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences,was successfully launc... The DArk Matter Particle Explorer(DAMPE),one of the four space-based scientific missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences,was successfully launched on 2015 Dec.17 from Jiuquan launch center.One of the most important scientific goals of DAMPE is to search for evidence of dark matter indirectly by measuring the spectrum of high energy cosmic-ray electrons.The neutron detector,one of the four sub-payloads of DAMPE,is designed to distinguish high energy electrons from hadron background by measuring the secondary neutrons produced in the shower.In this paper,a comprehensive introduction of the neutron detector is presented,including the design,calibration and performance.The analysis with simulated data and flight data indicates a powerful proton rejection capability of the neutron detector,which plays an essential role for TeV electron identification of DAMPE. 展开更多
关键词 neutron detector particle identification CALIBRATION SIMULATION
下载PDF
Development of a low-background neutron detector array 被引量:3
11
作者 Yu-Tian Li Wei-Ping Lin +14 位作者 Bing-Shui Gao Han Chen Hao Huang Yu Huang Tao-Yu Jiao Kuo-Ang Li Xiao-Dong Tang Xin-Yu Wang Xiao Fang Han-Xiong Huang Jie Ren Long-Hui Ru Xi-Chao Ruan Ning-Tao Zhang Zhi-Chao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第4期10-18,共9页
A low-background neutron detector array was developed to measure the cross section of the ^(13)C(a,n)^(16)O reaction,which is the neutron source for the s-process in AGB stars,in the Gamow window(E_(c.m.)=190±40 ... A low-background neutron detector array was developed to measure the cross section of the ^(13)C(a,n)^(16)O reaction,which is the neutron source for the s-process in AGB stars,in the Gamow window(E_(c.m.)=190±40 keV)at the China Jinping Underground Laboratory(CJPL).The detector array consists of 24^(3)He proportional counters embedded in a polyethylene cube.Owing to the deep underground location and a borated polyethylene shield around the detector array,a low background of 4.5(2)/h was achieved.The ^(51)V(p,n)^(51)Cr reaction was used to determine the neutron detection efficiency of the array for neutrons with energies E_(n)<1 MeV.Geant4 simulations are shown to effectively reproduce the experimental results.They were used to extrapolate the detection efficiency to higher energies for neutrons emitted in the ^(13)C(α,n)^(16)O reaction.The theoretical angular distributions of the ^(13)C(α,n)^(16)O reaction were shown to be important in the estimation of the uncertainties of the detection efficiency. 展开更多
关键词 Underground laboratory neutron detector Low background ^(3)He Counter
下载PDF
Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST 被引量:1
12
作者 DU Tengfei PENG Xingyu +7 位作者 CHEN Zhongjing HU Zhimeng GE Lijian HU Liqun ZHONG Guoqiang PU Neng CHEN Jinxiang FAN Tieshuan 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第9期950-953,共4页
a single crystal chemical vapor deposition (scCVD) diamond detector has been successfully employed for neutron measurements in the EAST (Experimental Advanced Superconducting Tokamak) plasmas. The seCVD diamond de... a single crystal chemical vapor deposition (scCVD) diamond detector has been successfully employed for neutron measurements in the EAST (Experimental Advanced Superconducting Tokamak) plasmas. The seCVD diamond detector coated with a 5 μm 6LiF (95% 6Li enriched) layer was placed inside a polyethylene moderator to enhance the detection efficiency. The time-dependent neutron emission from deuteron plasmas during neutral beam injection (NBI) heating was obtained. The measured results are compared with that of fission chamber detectors, which always act as standard neutron flux monitors. The scCVD diamond detector exhibits good reliability, stability and the capability to withstand harsh radiation environments despite its low detection efficiency due to the small active volume. 展开更多
关键词 scCVD diamond detector neutron measurement EAST
下载PDF
Simulation of Suppression of Gamma Sensitivity of 'Fission Electron-Collection' Neutron Detector 被引量:1
13
作者 王栋 张传飞 +4 位作者 李波均 蔡易平 朱学彬 司粉妮 席治国 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期26-29,共4页
The fission electron-collection neutron detector (FECND) is a current-type neutron detector. Based on the analysis of the generation process of the gamma signals of the FECND, a mechanism utilizing symmetrical struc... The fission electron-collection neutron detector (FECND) is a current-type neutron detector. Based on the analysis of the generation process of the gamma signals of the FECND, a mechanism utilizing symmetrical structure is proposed and discussed to suppress the gamma signals. According to this mechanism, tile electrons generated from the gamma rays can be well compensated for by the adjustment of the electrodes' thickness and distance. In this study, based on the Monte-Carlo simulation of the gamma signals of the FECND, the varying patterns are obtained between the gamma signals and the detector parameter settings. As indicated by the simulation results, the gamma electrons can be compensated for completely by simply adjusting the coated electrode substrate thickness and distance. Moreover, with a proposed optimal parameter setting, the gamma sensitivity can be as low as 3.39×10-23 C.cm2, while the signal-to-noise ratio can be higher than 200:1. The compensation results of the γ-rays in the FECND will be slightly affected by the manufacturing error or the assembly error. 展开更多
关键词 Simulation of Suppression of Gamma Sensitivity of it in neutron detector were As be for mode is
下载PDF
Analysis of Nuclear Track Parameters of CN-85 Detector Irradiated to Thermal Neutrons by Using MATLAB Program 被引量:1
14
作者 Hussain A. Al-Jobouri Mustafa Y. Rajab Laith A. Najam 《Detection》 2015年第4期29-36,共8页
CN-85 detector which covered with boric acid H3Bo3 pellete has been irradiated by thermal neutrons from (241Am-9Be) source with activity 12 Ci and neutron flux 105 n. cm-2. s-1. The irradiation times-TD for detector w... CN-85 detector which covered with boric acid H3Bo3 pellete has been irradiated by thermal neutrons from (241Am-9Be) source with activity 12 Ci and neutron flux 105 n. cm-2. s-1. The irradiation times-TD for detector were 4 h, 8 h, 16 h and 24 h. The track detector has been etched with sodium hydroxide. After chemical etching of the irradiated CN-85 detector, the images have been taken from a digital camera connected to the optical microscope. Image processing for the output images has been performed using MATALB program, and these images were analyzed and we had found the following relations: a) The relation between summation of opened track or surface density for tracks (intensity-IT) varies with radius of opening (track radius-RT). b) The relation between the tracks number-NT varies with the tracks diameter-DT (in micrometer) and tracks area-AT. That analysis of image processing was obtained, and the track intensity-IT was decreased with increase of track radius-RT at all of the irradiation time-TD. And the track intensity-IT was increased with increasing irradiation time-TD (h) for different track radius-RT (0.4225, 0.845, 1.2675 and 1.69 μm). The study indicates the possibility of using the analysis of image processing to CN-85 detector for classification of α-particle emitters through limitation of radius of track-RT, in addition to the contribution of these techniques in preparation of nano-filters and nono-membrane in nanotechnology fields. 展开更多
关键词 NUCLEAR TRACK detectors Thermal neutron MATLAB PROGRAM Image Processing
下载PDF
Sensitivity of a new-developed neutron detector 被引量:1
15
作者 PENGTai-Ping YANGHong-Qiong +3 位作者 YANGJian-Lun YANGGao-Zhao LILin-Bo SONGXian-Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2005年第1期40-42,共3页
We develop a kind of neutron detector, which consists of a polyethylene thin film and two PIN semicon- ductors connected face-to-face. The detector is insensitive to γ-rays. Its sensitivity to neutron has been calcul... We develop a kind of neutron detector, which consists of a polyethylene thin film and two PIN semicon- ductors connected face-to-face. The detector is insensitive to γ-rays. Its sensitivity to neutron has been calculated with MCNP program and calibrated by experiments, and the results indicate that the neutron sensitivity of the compensa- tion detector will vary with polyethylene converter. The compensation PIN detector can be employed to measure pulse neutron in neutron and gamma mixture radiation field. 展开更多
关键词 灵敏度 中子探测器 脉冲辐射 聚乙烯转炉
下载PDF
Experimental test of a new neutron threshold detector and its application 被引量:1
16
作者 LI Gui-Sheng, ZHANG Tian-Mei, SU You-Wu, LI Shu-Wei(Institute of Modern Physics, the Chinese Academy of Sciences, Lanzhou 730000) 《Nuclear Science and Techniques》 SCIE CAS CSCD 2002年第3期149-155,共7页
The possibility of using 209Bi as a new threshold detector to measurc high-energy neutrons was investigated for the first time. At the same time the experiment measured successfully the emitted neutron fiuence rate, e... The possibility of using 209Bi as a new threshold detector to measurc high-energy neutrons was investigated for the first time. At the same time the experiment measured successfully the emitted neutron fiuence rate, energy spectrum and dose equivalent rate distributions in the heavy ion target area using a detector complex including 209Bi, 115In, 27A1, 19F and 12C samples. 展开更多
关键词 阈探测器 中子谱 实验
下载PDF
Large area^(3)He tube array detector with modular design for multi‑physics instrument at CSNS 被引量:1
17
作者 Lin Zhu Jian‑Rong Zhou +29 位作者 Yuan‑Guang Xia Liang Xiao Hong Luo Xiao‑Juan Zhou Wen‑Qin Yang Bei‑Ju Guan Xing‑Fen Jiang Yan‑Feng Wang Hong Xu Hai‑Yun Teng Li‑Xin Zeng Jia‑Jie Li Lei Hu Ke Zhou Yong‑Xiang Qiu Pei‑Xun Shen Jun Xu Li‑Jiang Liao Xiao‑Zhuang Wang Gui‑An Yang Huai‑Chan Chen Ju‑Ping Xu Zhi‑Duo Li Song‑Lin Wang Jian Zhuang Yu‑Bin Zhao Jun‑Rong Zhang Wen Yin Zhi‑Jia Sun Yuan‑Bo Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第1期1-12,共12页
The multi-physics instrument(MPI)is the first user cooperative instrument at the China Spallation Neutron Source(CSNS).It was designed to explore the structures of complex materials at multiple scales based on the neu... The multi-physics instrument(MPI)is the first user cooperative instrument at the China Spallation Neutron Source(CSNS).It was designed to explore the structures of complex materials at multiple scales based on the neutron total scattering technique.This imposes the requirements for the detector,including a high detection efficiency to reduce the measurement time and a large solid angle coverage to cover a wide range of momentum transfers.To satisfy these demands,a large-area array of 3He-filled linear position-sensitive detectors(LPSDs)was constructed,each with a diameter of 1 inch and pressure of 20 atm.It uses an orbicular layout of the detector and an eight-pack module design for the arrangement of 3He LPSDs,covering a range of scattering angles from 3°to 170°with a total detector area of approximately 7 m2.The detector works in air,which is separated from the vacuum environment to facilitate installation and maintenance.The characteristics of the MPI detector were investigated through Monte Carlo(MC)simulations using Geant4 and experimental measurements.The results suggest that the detectors are highly efficient in the wavelength range of the MPI,and an efficiency over 25%is achievable for above 0.1 A neutrons.A minimal position resolution of 6.4 mm full width at half maximum(FWHM)along the tube length was achieved at a working voltage of 2200 V,and a deviation below 2 mm between the real and measured positions was attained in the beam experiment.The detector module exhibited good consistency and an excellent counting rate capacity of up to 80 kHz,which satisfied the requirements of experiments with a high event rate.Observations of its operation over the past year have shown that the detector works steadily in sample experiments,which allows the MPI to serve the user program successfully. 展开更多
关键词 neutron detector LPSD Position resolution Counting rate capacity
下载PDF
A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
18
作者 Jianjin Zhou Jianrong Zhou +9 位作者 Xiaojuan Zhou Lin Zhu Jianqing Yang Guian Yang Yi Zhang Baowei Ding Bitao Hu Zhijia Sun Limin Duan Yuanbo Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期225-230,共6页
In recent years,gas electron multiplier(GEM)neutron detectors have been developing towards high spatial resolution and high dynamic counting range.We propose a novel concept of an Al stopping layer to enable the detec... In recent years,gas electron multiplier(GEM)neutron detectors have been developing towards high spatial resolution and high dynamic counting range.We propose a novel concept of an Al stopping layer to enable the detector to achieve sub-millimeter(sub-mm)spatial resolution.The neutron conversion layer is coated with the Al stopping layer to limit the emission angle of ions into the drift region.The short track projection of ions is obtained on the signal readout board,and the detector would get good spatial resolution.The spatial resolutions of the GEM neutron detector with the Al stopping layer are simulated and optimized based on Geant4 Garfield Interface.The spatial resolution of the detector is 0.76 mm and the thermal neutron detection efficiency is about 0.01%when the Al stopping layer is 3.0μm thick,the drift region is 2 mm thick,the strip pitch is 600μm,and the digital readout is employed.Thus,the GEM neutron detector with a simple detector structure and a fast readout mode is developed to obtain a high spatial resolution and high dynamic counting range.It could be used for the direct measurement of a high-flux neutron beam,such as Bragg transmission imaging,very small-angle scattering neutron detection and neutron beam diagnostic. 展开更多
关键词 high spatial resolution Al stopping layer GEM neutron detector spallation neutron source
下载PDF
Fabrication and performance evaluation of GaN thermal neutron detectors with bm^6LiF conversion
19
作者 Zhifu Zhu Zhijia Sun +10 位作者 Jijun Zou Bin Tang Qinglei Xiu Renbo Wang Jinhui Qu Wenjuan Deng Shaotang Wang Junbo Peng Zhidong Wang Bin Tang Haiping Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期217-221,共5页
A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that ... A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that the reverse leakage current of the neutron detector was reduced significantly after deposition of a 6LiF conversion layer on the detector surface. The thermal neutrons used in this experiment were obtained from an 241Am-Be fast neutron source after being moderated by 100-mm-thick high-density polyethylene. The experimental results show that the detector with 16.9-μm thick 6LiF achieved a maximum neutron detection efficiency of 1.9% at a reverse bias of 0 V, which is less than the theoretical detection efficiency of 4.1% calculated for our GaN neutron detectors. 展开更多
关键词 thermal neutron GAN detector ^6LiF
下载PDF
Determination the Effect of Gamma Radiation and Thermal Neutron on PM-355 Detector by Using FTIR Spectroscopy
20
作者 Hussain Ali Al-Jobouri 《Detection》 2015年第3期15-20,共6页
The effect of gamma on nuclear track detector type PM-355 (at the dose range 200 to 1600 kGy) and thermal neutron (flux 105 n·cm-2·s-1) was calculated by using of two irradiation methods. First method (G + N... The effect of gamma on nuclear track detector type PM-355 (at the dose range 200 to 1600 kGy) and thermal neutron (flux 105 n·cm-2·s-1) was calculated by using of two irradiation methods. First method (G + N) was an irradiation PM-355 detector by gamma radiation and then irradiation by thermal neutrons, and another method (N + G) was irradiated by thermal neutrons and then gamma radiation. FTIR-spectroscopy was used to measure the change in deferent of transmission percent ΔT% at the wavenumber 1260 cm-1 with wavenumber 2962 cm-1 [ΔT%]1260-2962 and wavenumber 1138 cm-1 [ΔT%]1260-1138. The values of [ΔT%]1260-2962 and [ΔT%]1260-1138 were increasing with the increase of gamma irradiation with maximum response at 820 kGy and then drop after this dose until to 1600 kGy. This study determined the linear equations relation between the effect of gamma radiation on PM-355 detector and the change of [ΔT%]1260-2962 and [ΔT%]1260-1138, and this change appeared in (N + G) irradiation method better than in (G + N) irradiation method. The appearance of wavenumber 2964 cm-1 in (G + N) irradiation method referred to alkyl asymmetry C-H bond stretched out of skelated plane after changes in chemical structure of PM-355 detector by gamma or neutrons radiation. 展开更多
关键词 PM-355 NUCLEAR TRACK detectors GAMMA Radiation Thermal neutron FTIR-SPECTROSCOPY
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部