期刊文献+
共找到8,506篇文章
< 1 2 250 >
每页显示 20 50 100
An adaptive machine learning-based optimization method in the aerodynamic analysis of a finite wing under various cruise conditions
1
作者 Zilan Zhang Yu Ao +1 位作者 Shaofan Li Grace X.Gu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期27-34,共8页
Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil... Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements. 展开更多
关键词 Aerodynamic optimization Computational fluid dynamics Radial basis function Finite wing Deep learning neural network
下载PDF
The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings 被引量:13
2
作者 Guoyu Luo Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第6期531-541,共11页
The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 ... The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients. 展开更多
关键词 insect flight - Sweeping wing Unsteady aerodynamics Wing corrugation Planform
下载PDF
Experimental investigations of the functional morphology of dragonfly wings 被引量:2
3
作者 H. Rajabi A. Darvizeh 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期738-745,共8页
Nowadays, the importance of identifying the flight mechanisms of the dragonfly, as an inspiration for designing flapping wing vehicles, is well known. An experimental approach to understanding the complexities of inse... Nowadays, the importance of identifying the flight mechanisms of the dragonfly, as an inspiration for designing flapping wing vehicles, is well known. An experimental approach to understanding the complexities of insect wings as organs of flight could provide significant outcomes for design purposes. In this paper, a comprehensive investigation is carried out on the morphological and microstructural features of dragonfly wings. Scanning electron microscopy (SEM) and tensile testing are used to experimentally verify the functional roles of different parts of the wings. A number of SEM images of the elements of the wings, such as the nodus, leading edge, trailing edge, and vein sections, which play dominant roles in strengthening the whole structure, are presented. The results from the tensile tests indicate that the nodus might be the critical region of the wing that is subjected to high tensile stresses. Considering the patterns of the longitudinal corrugations of the wings obtained in this paper, it can be supposed that they increase the load-bearing capacity, giving the wings an ability to tolerate dynamic loading conditions. In addition, it is suggested that the longitudinal veins, along with the leading and trailing edges, are structural mechanisms that further improve fatigue resistance by providing higher fracture toughness, preventing crack propagation, and allowing the wings to sustain a significant amount of damage without loss of strength. 展开更多
关键词 dragonfly wings SEM tensile test nodus longitudinal corrugation
下载PDF
Golden Ratio-Based and Tapered Diptera Inspired Wings: Their Design and Fabrication Using Standard MEMS Technology 被引量:1
4
作者 X. Q. Bao 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期174-180,共7页
This work presents our understanding of insect wings, and the design and micromachining of artificial wings with golden ratio-based and tapered veins. The geometric anisotwpy of Leading Edge Veins (LEVs) selected by... This work presents our understanding of insect wings, and the design and micromachining of artificial wings with golden ratio-based and tapered veins. The geometric anisotwpy of Leading Edge Veins (LEVs) selected by Diptera has a function able to evade impact. As a Diptera example, the elliptic hollow-LEVs of cranefly wings are mechanically and aerodynamically significant. In this paper, an artificial wing was designed to be a fractal structure by mimicking cranefly wings and incorporating cross-veins and discal cell. Standard technologies of Microelectromechanical Systems (MEMS) were employed to materialize the design using the selected material. One SU-8 wing sample, light and stiffenough to be comparable to fresh cranefly wings, was presented. The as-prepared SU-8 wings are faithful to real wings not only in weight and vein pattern, but also in flexural stiffness and mass distribution. Thus our method renders possible mimickine with good lidelity of natural wings with complex geometry and morphology. 展开更多
关键词 insect inspired wing SU-8 MEMS flcxural stiffness DIPTERA
下载PDF
Aerodynamics of the Cupped Wings during Peregrine Falcon’s Diving Flight 被引量:1
5
作者 Benjamin Ponitz Michael Triep Christoph Brücker 《Open Journal of Fluid Dynamics》 2014年第4期363-372,共10页
During a dive peregrine falcons can reach velocities of more than 320 km/h and makes themselves the fastest animals in the world. The aerodynamic mechanisms involved are not fully understood yet and the search for a c... During a dive peregrine falcons can reach velocities of more than 320 km/h and makes themselves the fastest animals in the world. The aerodynamic mechanisms involved are not fully understood yet and the search for a conclusive answer to this fact motivates the three-dimensional (3-D) flow study. Especially the cupped wing configuration which is a unique feature of the wing shape in falcon peregrine dive is our focus herein. In particular, the flow in the gap between the main body and the cupped wing is studied to understand how this flow interacts with the body and to what extend it affects the integral forces of lift and drag. Characteristic shapes of the wings while diving are studied with regard to their aerodynamics using computational fluid dynamics (CFD). The results of the numerical simulations via ICEM CFD and OpenFOAM show predominant flow structures around the body surface and in the wake of the falcon model such as a pair of body vortices and tip vortices. The drag for the cupped wing profile is reduced in relation to the configuration of opened wings (without cupped-like profile) while lift is increased. The purpose of this study is primarily the basic research of the aerodynamic mechanisms during the falcon’s diving flight. The results could be important for maintaining good maneuverability at high speeds in the aviation sector. 展开更多
关键词 Peregrine FALCon AERODYNAMICS Cupped wings CFD
下载PDF
Decomposition of Mathematical Programming Models for Aircraft Wing Design Facilitating the Use of Dynamic Programming Approach
6
作者 Prashant K. Tarun Herbert W. Corley 《American Journal of Operations Research》 2023年第5期111-131,共21页
Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be d... Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design. 展开更多
关键词 Aircraft Wing Design Maximum Reliability Design Minimum Weight Design Dynamic Programming OPTIMIZATIon DECOMPOSITIon
下载PDF
Development and formation of wing cuticle based on transcriptomic analysis in Locusta migratoria during metamorphosis
7
作者 Jing Zhang Zhaochen Wu +5 位作者 Shuo Li He Huang Suning Liu Weimin Liu Xiaoming Zhao Jianzhen Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1285-1299,共15页
Wings are an important flight organ of insects.Wing development is a complex process controlled by a series of genes.The flightless wing pad transforms into a mature wing with the function of migratory flight during t... Wings are an important flight organ of insects.Wing development is a complex process controlled by a series of genes.The flightless wing pad transforms into a mature wing with the function of migratory flight during the nymphto-adult metamorphosis.However,the mechanism of wing morphogenesis in locusts is still unclear.This study analyzed the microstructures of the locust wing pads at pre-eclosion and the wings after eclosion and performed the comparative transcriptome analysis.RNA-seq identified 25,334 unigenesand 3,430 differentially expressed genes(DEGs)(1,907 up-regulated and 1,523 down-regulated).The DEGs mainly included cuticle development(LmACPs),chitin metabolism(Lm Idgf4),lipid metabolism-related genes,cell adhesion(Integrin),zinc finger transcription factors(LmSalm,LmZF593 andLmZF521),and others.Functional analysis based on RNA interference and hematoxylin and eosin(H&E)staining showed that the three genes encoded zinc finger transcription factors are essential for forming wing cuticle and maintaining morphology in Locusta migratoria.Finally,the study found that the LmSalm regulates the expression of LmACPs in the wing pads at pre-eclosion,and LmZF593 and LmZF521 regulate the expression of LmIntegrin/LmIdgf4/LmHMT420 in the wings after eclosion.This study revealed that the molecular regulatory axis controls wing morphology in nymphal and adult stages of locusts,offering a theoretical basis for the study of wing development mechanisms in hemimetabolous insects. 展开更多
关键词 Locusta migratoria wing development METAMORPHOSIS RNA-SEQ
下载PDF
EXPERIMENTAL INVESTIGATION ABOUT THE UNSTEADY AERODYNAMIC CHARACTERISTICS OF WINGS
8
作者 Yu Xinzhi Yang Yongnian Wu Ze (Aircra.ft Engineering Department, Northwestern Polytechnical University, Xi’an, China, 710072) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第3期169-174,共6页
The technical programme and measurement system of experimental investigation of unsteady dynamic characteristics are introduced. The unsteady lift characteristics of a delta wing with leading edge sweep angle 60°... The technical programme and measurement system of experimental investigation of unsteady dynamic characteristics are introduced. The unsteady lift characteristics of a delta wing with leading edge sweep angle 60°are investigated when the wing is rapidly pitching up at incidence from 0°until 90°.The experimental results are that the maximum lift coefficient and stall incidence are increased with increased pitch-up rate. when the wing is rapidly pitching up. The infuences of reduced frequency. average incidence, the oscillating amplitude and pitch axis location on the unsteady instantaneous force produced by oscillating wings are investigated too. 展开更多
关键词 wings OSCILLATIonS unsteady flow dynamic characteristics
下载PDF
Structural Design and Analysis of Small Flapping Wing Aircraft Based on the Crank Slider Mechanism
9
作者 Minghui Ma Fengli Liu Yongping Hao 《Journal of Electronic Research and Application》 2023年第1期25-31,共7页
In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds w... In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds were imitated.A small bionic flapping wing aircraft was built.The flapping of the wing was realized by the crank slider mechanism,and the sizes of each part were calculated according to the bionics formula.The wingspan was 360.37 mm,the body width was 22 mm,the body length was 300 mm,the wing area was 0.05 m^(2),the flapping amplitude was 71°.ADAMS software was used to simulate the dynamics of the designed aircraft,and the variation of flapping amplitude and angular velocity during the movement of the aircraft was obtained,which verified the feasibility of the mechanism.The prototype aircraft was made for flight test,and the designed bionic flapping wing aircraft achieved the expected effect.It provides a theoretical basis and data support for the design and manufacture of small flapping wing aircraft. 展开更多
关键词 Flapping wing aircraft Structural design Dynamic simulation
下载PDF
Navigating Temporal and Spatial Dimensions:Unveiling the Fictional Essence and Authenticity in the Narrative of The Rise and Fall of Wing Shing Street
10
作者 Xiaohan Lu Jing Yang 《Journal of Contemporary Educational Research》 2023年第11期6-10,共5页
The novel The Rise and Fall of Wing Shing Street delves into the reality of Hong Kong residents deeply attuned to spatial awareness but detached from temporal significance,entangling emotions surrounding time and spac... The novel The Rise and Fall of Wing Shing Street delves into the reality of Hong Kong residents deeply attuned to spatial awareness but detached from temporal significance,entangling emotions surrounding time and space.Through narrative interruption and extension,the author portrays the genuine struggles of Hong Kong inhabitants-juxtaposing the blurred boundaries of time and space and the inherent rootlessness of reality within a fictionalized framework.Emphasizing the 20th-century human condition,wherein spatial awareness overshadows temporal understanding,the novel underscores the consequences:a loss of history and cultural identity.With a fresh perspective,the narrative explores the interplay of time and space,accentuating both the fictitious and authentic dimensions.This prompts readers to reconsider their history,culture,and the current moment,ultimately highlighting the pivotal role of temporal awareness. 展开更多
关键词 the Rise and Fall of Wing Shing Street Spatial awareness Temporal awareness Rootlessness Cultural identity Return of the heart
下载PDF
Thrust Optimization of Flapping Wing via Gradient Descent Technologies
11
作者 Jeshwanth Kundem 《Open Journal of Fluid Dynamics》 2024年第2期83-99,共17页
The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flo... The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flow around the airfoil. An efficient framework for implementing the coupled solver and optimization in a multicore environment has been implemented for the generation of optimized solutionsmaximizing thrust performance & computational speed. 展开更多
关键词 Steepest Descent CFD Flapping Wing Airfoil Thrust Performance
下载PDF
Wings-FDY一步法生产ITY的工艺研究
12
作者 周龙 余锡攀 +2 位作者 李振宇 孙建杰 杜杨洋 《聚酯工业》 CAS 2024年第3期26-28,共3页
通过设备改造及工艺优化,成功实现了ITY在Wings-FDY设备上一步法生产。研究结果表明:风压设定为30 Pa,调整纺丝/卷绕上油比例为6:4,预热辊温度51℃,定型辊温度124℃,拉伸倍数3.2,卷绕速度3550 m/min时,ITY 148dtex/108f纺况稳定,物理指... 通过设备改造及工艺优化,成功实现了ITY在Wings-FDY设备上一步法生产。研究结果表明:风压设定为30 Pa,调整纺丝/卷绕上油比例为6:4,预热辊温度51℃,定型辊温度124℃,拉伸倍数3.2,卷绕速度3550 m/min时,ITY 148dtex/108f纺况稳定,物理指标均匀,满足客户定制化的产品需求。 展开更多
关键词 ITY wings-FDY 设备改造
下载PDF
Numerical simulation of the influence of ground effect on the performance of multi section wings
13
作者 ZHANG Xinpeng KUANG Jianghong LV Hongyan 《International English Education Research》 2017年第1期57-59,共3页
the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simu... the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simulation analysis, the calculation results show that the lower altitude, lift and drag wing angle decreased; the greater the ground the effect is more obvious, the greater the loss of lift. The simulation results show that the lift coefficient is slightly less than that of unsteady numerical simulation, and the drag coefficient is slightly less than that of unsteady numerical simulation. The ground disturbance to the wing not only affects the steady state flow field, but also is closely related to the unsteady aerodynamic performance. The results of this study can provide a reference for the design and flight control of large aircraft wings. 展开更多
关键词 multi-element wing Ground effect numerical simulation
下载PDF
Aerodynamic Sound Radiated from Longitudinal and Transverse Vortex Systems Generated around the Leading Edge of Delta Wings
14
作者 Shigeru Ogawa Jumpei Takeda +1 位作者 Taiki Kawate Keita Yano 《Open Journal of Fluid Dynamics》 2016年第2期101-118,共18页
Flow around the front pillar of an automobile is typical of a flow field with separated and reattached flow by a vortex system. It is known that the vortex system causes the greatest aerodynamic sound around a vehicle... Flow around the front pillar of an automobile is typical of a flow field with separated and reattached flow by a vortex system. It is known that the vortex system causes the greatest aerodynamic sound around a vehicle. The objective of the present study is to clarify the relationship between vortical structures and aerodynamic sound by the vortex system generated around the front pillar. The vortex system consists of the longitudinal and the transverse system. The characteristics of the longitudinal vortex system were investigated in comparison with the transverse one. Two vortex systems were reproduced by three-dimensional delta wings. The flow visualization experiment and the computational fluid dynamics (CFD) captured well the characteristics of the flow structure of the two vortex systems. These results showed that the longitudinal with the rotating axis along mean flow direction had cone-shaped configuration whereas the transverse with the rotating axis vertical to mean flow direction had elliptic one. Increasing the tip angles of the wings from 40 to 140 degrees, there first exists the longitudinal vortex system less than 110 degrees, with the transition region ranging from 110 to 120 degrees, and finally over 120 degrees the transverse appears. The characteristics of aerodynamic sound radiated from the two vortex systems were investigated in low Mach numbers, high Reynolds number turbulent flows in the lownoise wind tunnel. As a result, it was found that the aerodynamic sound radiated from both the longitudinal and the transverse vortex system was proportional to the fifth from sixth power of mean flow velocity, and that the longitudinal vortex generated the aerodynamic sound larger than the transverse. 展开更多
关键词 Aerodynamic Noise Delta Wing Longitudinal Vortex Transverse Vortex CFD
下载PDF
WingsFDY设备生产22dtex/24f细旦涤纶的工艺探讨
15
作者 翟佳羽 袁礼栋 +2 位作者 李婧楠 苏宏新 赵毛毛 《合成纤维》 CAS 2024年第8期18-22,共5页
对22dtex/24f细旦涤纶全拉伸丝(FDY)生产中的熔体输送工艺、纺丝工艺、冷却工艺和牵伸定形等工艺进行了详细的分析与探讨。生产实践表明,该产品生产中采用的巴马格8辊WingsFDY设备具有高效节能、流程短的优势,能够有效降低FDY的生产成本... 对22dtex/24f细旦涤纶全拉伸丝(FDY)生产中的熔体输送工艺、纺丝工艺、冷却工艺和牵伸定形等工艺进行了详细的分析与探讨。生产实践表明,该产品生产中采用的巴马格8辊WingsFDY设备具有高效节能、流程短的优势,能够有效降低FDY的生产成本,对设备应用及新品种的开发具有一定的实践指导意义。 展开更多
关键词 细旦涤纶DTY 巴马格wingsFDY设备 工艺
下载PDF
Wings of Dream Spread, Hearts Soar above Sea——Review on A Dream by the Sea
16
作者 尹志成 《杂技与魔术》 2007年第1期36-37,共2页
In any case, it shows that over thousands of hundreds of years, the inseparable connection between human beings and the sea has been generating enormous curiosity, yearning, romances and ardors. Even for someone who w... In any case, it shows that over thousands of hundreds of years, the inseparable connection between human beings and the sea has been generating enormous curiosity, yearning, romances and ardors. Even for someone who was brought 展开更多
关键词 Hearts Soar above Sea Review on A Dream by the Sea wings of Dream Spread show
下载PDF
基于“一体两翼三融合”的课堂改革与实践——以高职院校“Python程序设计”课程为例
17
作者 夏春芬 《湖北开放大学学报》 2024年第1期59-64,共6页
新时代职业教育掀起“课堂革命”,以“学生的全面发展”为目标,重构教学内容,重组课堂资源,重立师生关系,重建评价体系,培养出既“红”又“专”的新型高级技能型人才。以高职院校“Python程序设计”课程为例,针对传统程序设计语言类课... 新时代职业教育掀起“课堂革命”,以“学生的全面发展”为目标,重构教学内容,重组课堂资源,重立师生关系,重建评价体系,培养出既“红”又“专”的新型高级技能型人才。以高职院校“Python程序设计”课程为例,针对传统程序设计语言类课堂中存在的思政元素不够、学生学习动力不足、教师整体水平需提升、教学内容存在理论和实践脱节、教学手段单一、教学资源不足、教学评价方式单一等问题,提出“一体两翼三融合”课堂改革思路,开展“OBE+课程思政”双课堂下浸润式的教学课堂改革。通过系列改革举措,课程教学目标达成良好,学生素质培养成果显著,“双师型”教师团队初具规模,社会服务成效凸显,为高职程序设计语言类课堂教学改革提供了参考价值。 展开更多
关键词 课堂改革 一体两翼三融合 Python程序设计 双课堂
下载PDF
A computational study of the wing-wing and wing-body interactions of a model insect 被引量:17
18
作者 Xin Yu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期421-431,共11页
The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grid... The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions. 展开更多
关键词 INSECT AERODYNAMICS Wing/winginteraction Wing/body interaction
下载PDF
Aeroelastic Analysis and Optimization of High-aspect-ratio Composite Forward-swept Wings 被引量:9
19
作者 万志强 颜虹 +1 位作者 刘德广 杨超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期317-325,共9页
In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit... In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed. 展开更多
关键词 aeroeiasticity structural optimization high-aspect-ratio wing forward-swept wing COMPOSITE
下载PDF
Effects of Methanol on Wettability of the Non-Smooth Surface on Butterfly Wing 被引量:19
20
作者 Yan Fang Gang Sun +2 位作者 Qian Cong Guang-hua Chen Lu-quan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第2期127-133,共7页
The contact angles of distilled water and methanol solution on the wings of butterflies were determined by a visual contact angle measuring system. The scale structures of the wings were observed using scanning electr... The contact angles of distilled water and methanol solution on the wings of butterflies were determined by a visual contact angle measuring system. The scale structures of the wings were observed using scanning electron microscopy, The influence of the scale micro- and ultra-structure on the wettability was investigated. Results show that the contact angle of distilled water on the wing surfaces varies from 134.0° to 159.2°. High hydrophobicity is found in six species with contact angles greater than 150°. The wing surfaces of some species are not only hydrophobic but also resist the wetting by methanol solution with 55% concentration. Only two species in Parnassius can not resist the wetting because the micro-structure (spindle-like shape) and ultra-structure (pinnule-like shape) of the wing scales are remarkably different from that of other species. The concentration of methanol solution for the occurrence of spreading/wetting on the wing surfaces of different species varies from 70% to 95%. After wetting by methanol solution for 10 min, the distilled water contact angle on the wing surface increases by 0.8°-2.1°, showing the promotion of capacity against wetting by distilled water. 展开更多
关键词 non-smooth surface butterfly wing SCALE WETTABILITY micro/ultra-structure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部