To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cath...To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cathode distance(ACD)and electrolyte height(EH)on the thermo-electrical behavior of the NRERC were studied by ANSYS.The results illustrate that the cell voltage drop(CVD)and the temperature will rise with a similar tendency when the ACD increases.Also,the temperature rises gradually with EH,but the CVD decreases.Ultimately,when the ACD is 115 mm and the EH is 380 mm,the CVD is 4.61 V and the temperature is 1109.8℃.Under these conditions,the thermal field distribution is more reasonable and the CVD is lower,which is beneficial to the long service life and low energy consumption of the NRERC.展开更多
A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite...A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 ℃. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria based solid electrolyte is improved. The effects of rare earth and alkali earth ions on the electricity were discussed. The open circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce 0.8 Sm 0.2 ) 1-0.05 Ca 0.05 O 2- δ as electrolyte are 0.86 V and 33 mW·cm -2 , respectively.展开更多
Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature wer...Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature were measured.A Bi_2O_3-based rare earth solid electrolyte fuel cell with ZrO_2-Y_2O_3 protection film was made.展开更多
With the applications of Nd-Fe-B material extending in recent years, the materials of neodymium metal and other rare earth metal alloy confront the increased demand and the high quality request at the same time.These ...With the applications of Nd-Fe-B material extending in recent years, the materials of neodymium metal and other rare earth metal alloy confront the increased demand and the high quality request at the same time.These factors stimulated greatly to perfect the producing craft of RE metals and improve the equipments.The rare earth electrolysis cell is developing towards large-scale way.Notwithstanding the present electrolysis cell of Nd metal, include 6 kA and 10 kA cell, exists some insurmountable problems during operation and these problems lead to lower electric efficiency and higher operating costs.So it is significant to study the physical fields of rare earth electrolysis cell.In this paper,a numerical flow mode is established using vortex- flowing function method and the fluid flow field of 3000A Nd electrolysis cell is computed using MATLAB.The results of the study will be important reference in theory for improving and enlarging rare earth fluoride system cell.展开更多
Solid oxide fuel cell(SOFC) electrodes,after a high temperature sintering,may be impregnated to deposit nanoparticles within their pores to enhance the catalytic function.Samarium doped CeO2(SDC) nanoparticles were in...Solid oxide fuel cell(SOFC) electrodes,after a high temperature sintering,may be impregnated to deposit nanoparticles within their pores to enhance the catalytic function.Samarium doped CeO2(SDC) nanoparticles were infiltrated into(Pr0.7Ca0.3)0.9MnO3-δ(PCM) cathode of anode supported SOFC cells.The cell with 2.6 mg/cm2 SDC impregnated in cathode showed the maximum power density of 580 mW/cm2 compared with 310 mW/cm2 of the cell without impregnation at 850 °C.The cells were also characterized with the impeda...展开更多
Strontium doped lanthanum manganite (LSM) powders were synthesized by three different routes: azeotropie distillation, sol-gel and solid state reaction respectively. The LSM samples, made by azeotropic distillation an...Strontium doped lanthanum manganite (LSM) powders were synthesized by three different routes: azeotropie distillation, sol-gel and solid state reaction respectively. The LSM samples, made by azeotropic distillation and sol-gel methods were prepared by firing at 1000℃for 6 h, and the LSM sample, made by solid state reaction method was produced by sintering at 1400℃for 18 h. The samples were characterized by XRD, TEC, SEM, EIS and polarization performance analysis. The results show that all the samples made by different methods have pure orthorhombic LSM phase, however exhibit different micro structure and electrochemical characterization, which relates to the different synthesis methods. The solid state reaction method produces the samples with larger particle size compared with azeotropic distillation and sol-gel methods. The powders made by azeotropic distillation method have less agglomerated particles compared with that made by sol-gel method because the precursor in the former is dispersed in n-butanol before sintering. The polarization current density of powder made by azeotropic distillation method was twice of that made by sol-gel method and four times of that made by solid state reaction method. The values of polarization resistance (Rp) are 0.35Ω·cm for the cathode synthesized by azeotropic distillation route, which is much lower than sol-gel (1.5Ω·cm2) and solid state reaction (2.3Ω·cm2) at 800℃.展开更多
A series samples of La0.6M0.4FeO3-δ (M = Ca, Sr, process (GNP). FTIR, TG-DSC, XRD and TEM techniques Ba) perovskite-type oxides were prepared by glycine nitrate were used to characterize the chemical constitution...A series samples of La0.6M0.4FeO3-δ (M = Ca, Sr, process (GNP). FTIR, TG-DSC, XRD and TEM techniques Ba) perovskite-type oxides were prepared by glycine nitrate were used to characterize the chemical constitution, thermal stability and phase structure. The electrical conductivity of the samples was investigated by four-probe technique. With the increase of substituted-ionic radius, the temperature of phase formation increases, and the solid solubility decreases gradually, respectively. The La0.6Ca0.4FeO3-δ(LCF)powder is pure cubic perovskite-type crystalline after fired at 850℃ for 2 h. The XRD patterns of La0.6Sr0.4FeO3-δ(LSF) powder shows a small quantity of SrO peaks sintered at 1050℃ for 2 h. The electrical conductivity of LCF and LSF at 500 - 800℃ is over 100 S·cm^ - 1, and the value of LCF is 1170 S·cm^ - 1 at 800℃, which indicate that LCF and LSF may be used as a profitable cathode for IT-SOFCs. The characteristic of La0.6 Ba0.4FeO3-δ(LBF) is poor, and the electrical conductivity at intermediate temperatures is 1/20 less than that of LSF.展开更多
La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning el...La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS). The results showed that single-phased perovskite-type oxide powders with small particle size were obtained by the process, and the compositions of the productions agreed with the designed molar ratio. The electronic conductivity and ionic conductivity of La0.8Sr0.2Co1-yFeyO3-δ were investigated by DC four-terminal method and AC impedance spectroscopy, respectively. The electronic conductivity of La0.8Sr0.2Co1-yFeyO3-δ is approximately 2~4 orders of magnitude higher than the ionic conductivity. It was confirmed that the conductivities of the materials were strongly influenced by the composition anions, temperature and sample preparing process.展开更多
Solid oxide fuel cells(SOFCs)are an all-solid energy conversion device from the chemical energy of fuels to electric energy at intermediate and high temperatures.Up to now,massive efforts have been made in developing ...Solid oxide fuel cells(SOFCs)are an all-solid energy conversion device from the chemical energy of fuels to electric energy at intermediate and high temperatures.Up to now,massive efforts have been made in developing different components of solid oxide fuel cells,including electrolyte,anode,cathode and interconnect materials.Rare earth elements play an indispensable role in different components of SOFCs which have been extensively studied in the recent decades.In this review,we concentrate upon the rare earth application and recent advances in SOFCs and related materials.Materials structure involves perovskites,Ruddlesden-Popper,fluorite,spinel,pyrochlore,apatite and so on.Moreover,the effects of rare earth based oxides as matrix or dopants in different components are also discussed.Structures and properties of the materials are related to the element type,valence,coordination and ion radius.This article will provide a comprehensive research direction towards SOFCs components for their composition,structural design and mechanisms research.展开更多
基金Project(51674302)supported by the National Natural Science Foundation of China。
文摘To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cathode distance(ACD)and electrolyte height(EH)on the thermo-electrical behavior of the NRERC were studied by ANSYS.The results illustrate that the cell voltage drop(CVD)and the temperature will rise with a similar tendency when the ACD increases.Also,the temperature rises gradually with EH,but the CVD decreases.Ultimately,when the ACD is 115 mm and the EH is 380 mm,the CVD is 4.61 V and the temperature is 1109.8℃.Under these conditions,the thermal field distribution is more reasonable and the CVD is lower,which is beneficial to the long service life and low energy consumption of the NRERC.
文摘A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 ℃. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria based solid electrolyte is improved. The effects of rare earth and alkali earth ions on the electricity were discussed. The open circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce 0.8 Sm 0.2 ) 1-0.05 Ca 0.05 O 2- δ as electrolyte are 0.86 V and 33 mW·cm -2 , respectively.
文摘Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature were measured.A Bi_2O_3-based rare earth solid electrolyte fuel cell with ZrO_2-Y_2O_3 protection film was made.
文摘With the applications of Nd-Fe-B material extending in recent years, the materials of neodymium metal and other rare earth metal alloy confront the increased demand and the high quality request at the same time.These factors stimulated greatly to perfect the producing craft of RE metals and improve the equipments.The rare earth electrolysis cell is developing towards large-scale way.Notwithstanding the present electrolysis cell of Nd metal, include 6 kA and 10 kA cell, exists some insurmountable problems during operation and these problems lead to lower electric efficiency and higher operating costs.So it is significant to study the physical fields of rare earth electrolysis cell.In this paper,a numerical flow mode is established using vortex- flowing function method and the fluid flow field of 3000A Nd electrolysis cell is computed using MATLAB.The results of the study will be important reference in theory for improving and enlarging rare earth fluoride system cell.
文摘Solid oxide fuel cell(SOFC) electrodes,after a high temperature sintering,may be impregnated to deposit nanoparticles within their pores to enhance the catalytic function.Samarium doped CeO2(SDC) nanoparticles were infiltrated into(Pr0.7Ca0.3)0.9MnO3-δ(PCM) cathode of anode supported SOFC cells.The cell with 2.6 mg/cm2 SDC impregnated in cathode showed the maximum power density of 580 mW/cm2 compared with 310 mW/cm2 of the cell without impregnation at 850 °C.The cells were also characterized with the impeda...
基金Project supported by the National Natural Science Foundation of China (90510006)
文摘Strontium doped lanthanum manganite (LSM) powders were synthesized by three different routes: azeotropie distillation, sol-gel and solid state reaction respectively. The LSM samples, made by azeotropic distillation and sol-gel methods were prepared by firing at 1000℃for 6 h, and the LSM sample, made by solid state reaction method was produced by sintering at 1400℃for 18 h. The samples were characterized by XRD, TEC, SEM, EIS and polarization performance analysis. The results show that all the samples made by different methods have pure orthorhombic LSM phase, however exhibit different micro structure and electrochemical characterization, which relates to the different synthesis methods. The solid state reaction method produces the samples with larger particle size compared with azeotropic distillation and sol-gel methods. The powders made by azeotropic distillation method have less agglomerated particles compared with that made by sol-gel method because the precursor in the former is dispersed in n-butanol before sintering. The polarization current density of powder made by azeotropic distillation method was twice of that made by sol-gel method and four times of that made by solid state reaction method. The values of polarization resistance (Rp) are 0.35Ω·cm for the cathode synthesized by azeotropic distillation route, which is much lower than sol-gel (1.5Ω·cm2) and solid state reaction (2.3Ω·cm2) at 800℃.
基金Project Supported bythe Natural Science Foundation of Bureau Education Anhui Province (N2004kj326)
文摘A series samples of La0.6M0.4FeO3-δ (M = Ca, Sr, process (GNP). FTIR, TG-DSC, XRD and TEM techniques Ba) perovskite-type oxides were prepared by glycine nitrate were used to characterize the chemical constitution, thermal stability and phase structure. The electrical conductivity of the samples was investigated by four-probe technique. With the increase of substituted-ionic radius, the temperature of phase formation increases, and the solid solubility decreases gradually, respectively. The La0.6Ca0.4FeO3-δ(LCF)powder is pure cubic perovskite-type crystalline after fired at 850℃ for 2 h. The XRD patterns of La0.6Sr0.4FeO3-δ(LSF) powder shows a small quantity of SrO peaks sintered at 1050℃ for 2 h. The electrical conductivity of LCF and LSF at 500 - 800℃ is over 100 S·cm^ - 1, and the value of LCF is 1170 S·cm^ - 1 at 800℃, which indicate that LCF and LSF may be used as a profitable cathode for IT-SOFCs. The characteristic of La0.6 Ba0.4FeO3-δ(LBF) is poor, and the electrical conductivity at intermediate temperatures is 1/20 less than that of LSF.
基金the National Natural Science Foundation of China (50204007)the Talent Foundation of Yunnan Province (2005PY01-33)Programfor New Century Excellent Talents in University (NCET-07-0387)
文摘La0.8Sr0.2Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8) powders were synthesized by ethylenediamine tetraacetic acid (EDTA) complexing sol-gel process. The powders were characterized via X-ray diffraction (XRD) and scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS). The results showed that single-phased perovskite-type oxide powders with small particle size were obtained by the process, and the compositions of the productions agreed with the designed molar ratio. The electronic conductivity and ionic conductivity of La0.8Sr0.2Co1-yFeyO3-δ were investigated by DC four-terminal method and AC impedance spectroscopy, respectively. The electronic conductivity of La0.8Sr0.2Co1-yFeyO3-δ is approximately 2~4 orders of magnitude higher than the ionic conductivity. It was confirmed that the conductivities of the materials were strongly influenced by the composition anions, temperature and sample preparing process.
基金Project supported by Fundamental Research Funds for Central Universities of the China University of Geosciences Beijing(590121038)Cultivation Project of the State Key Laboratory of Green Development and High-value Utilization of Ionic Rare Earth Resources in Jiangxi Province(20194AFD44003)。
文摘Solid oxide fuel cells(SOFCs)are an all-solid energy conversion device from the chemical energy of fuels to electric energy at intermediate and high temperatures.Up to now,massive efforts have been made in developing different components of solid oxide fuel cells,including electrolyte,anode,cathode and interconnect materials.Rare earth elements play an indispensable role in different components of SOFCs which have been extensively studied in the recent decades.In this review,we concentrate upon the rare earth application and recent advances in SOFCs and related materials.Materials structure involves perovskites,Ruddlesden-Popper,fluorite,spinel,pyrochlore,apatite and so on.Moreover,the effects of rare earth based oxides as matrix or dopants in different components are also discussed.Structures and properties of the materials are related to the element type,valence,coordination and ion radius.This article will provide a comprehensive research direction towards SOFCs components for their composition,structural design and mechanisms research.