A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthqu...A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthquakes. This paper presents a numerical simulation of self-centering beam-column connections with BFFDs, in which the gap opening/closing at the beam-column interfaces is simulated by using pairs of zero-length elements with compression-only material properties, and the energy dissipation due to friction is simulated by using truss elements with specified hysteretic behavior. In particular, the effect of the friction bolt bearing against the slotted plate in the BFFDs was modeled, so that the increase in lateral force and the loss of friction force due to the bolt bearing could be taken into account. Parallel elastic-perfectly plastic gap (ElasticPPGap) materials in the Open System for Earthquake Engineering Simulation (OpenSees) were used with predefined gaps to specify the sequence that each bolt went into the bearing and the corresponding increase in bending stiffness. The MinMax material in OpenSees is used to specify the minimum and maximum values of strains of the ElasticPPGap materials. To consider the loss of friction force due to bok bearing, a number of parallel hysteretic materials were used, and the failure of these materials in sequence simulated the gradual loss of friction force. Analysis results obtained by using the proposed numerical model are discussed and compared with the test results under cyclic loadings and the seismic loading, respectively.展开更多
In order to establish the design method for T-shaped tensile connector with high strength bolt,the theoretical analysis is carried out. Firstly,it analyzes the performance of the connector and establishes prying force...In order to establish the design method for T-shaped tensile connector with high strength bolt,the theoretical analysis is carried out. Firstly,it analyzes the performance of the connector and establishes prying force calculation model. Based on the model,prying force equation and function between bolt prying force and flange thickness is derived,and the min and max thickness requirement of flange plate under a certain tension load is then obtained. Finally,two simplified design methods of the connector are proposed,which are bolt pulling capacity method and flange plate bending capacity method.展开更多
In this paper,a failure evaluation criterion was proposed for the bolted casing-flange structure under impact loading.Subsequently,ballistic tests with eighteen bolted casing-flange structure specimens were conducted ...In this paper,a failure evaluation criterion was proposed for the bolted casing-flange structure under impact loading.Subsequently,ballistic tests with eighteen bolted casing-flange structure specimens were conducted to validate the failure evaluation criterion.Parameter studies were then carried out using the validated FE models.Both the experimental and numerical results demonstrated the accuracy of the failure evaluation criterion.The failure evaluation criterion provided a quick and easy way to determine the failure mode of the casing connection area by using the materials and dimensions of the structure.Based on the failure evaluation criterion,designing the structural failure mode of the bolted casing-flange structure to be between flange failure and bolt failure can improve the impact resistance of the connection area of the aero-engine casings.This investigation revealed that the impact failure is not the unique criterion in evaluating the containment of the casing connection area,structural failure should also be involved in the evaluation criteria.展开更多
基金National Natural Science Foundation of China Under Grant No. 51078075a grant from Southeast University (No. 3205000502)the financial support from the State Key Lab of Subtropical Building Science, South China University of Technology under Grant No. 2010KB05
文摘A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthquakes. This paper presents a numerical simulation of self-centering beam-column connections with BFFDs, in which the gap opening/closing at the beam-column interfaces is simulated by using pairs of zero-length elements with compression-only material properties, and the energy dissipation due to friction is simulated by using truss elements with specified hysteretic behavior. In particular, the effect of the friction bolt bearing against the slotted plate in the BFFDs was modeled, so that the increase in lateral force and the loss of friction force due to the bolt bearing could be taken into account. Parallel elastic-perfectly plastic gap (ElasticPPGap) materials in the Open System for Earthquake Engineering Simulation (OpenSees) were used with predefined gaps to specify the sequence that each bolt went into the bearing and the corresponding increase in bending stiffness. The MinMax material in OpenSees is used to specify the minimum and maximum values of strains of the ElasticPPGap materials. To consider the loss of friction force due to bok bearing, a number of parallel hysteretic materials were used, and the failure of these materials in sequence simulated the gradual loss of friction force. Analysis results obtained by using the proposed numerical model are discussed and compared with the test results under cyclic loadings and the seismic loading, respectively.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51408620)the Major Science and Technology Project during the Third Five-Year Plan Period of China MCC(Grant No.0012013010)
文摘In order to establish the design method for T-shaped tensile connector with high strength bolt,the theoretical analysis is carried out. Firstly,it analyzes the performance of the connector and establishes prying force calculation model. Based on the model,prying force equation and function between bolt prying force and flange thickness is derived,and the min and max thickness requirement of flange plate under a certain tension load is then obtained. Finally,two simplified design methods of the connector are proposed,which are bolt pulling capacity method and flange plate bending capacity method.
基金support from the National Natural Science Foundation of China(Nos.11772158,11502113)the Fundamental Research Funds for Central Universities,China(No.30917011103)。
文摘In this paper,a failure evaluation criterion was proposed for the bolted casing-flange structure under impact loading.Subsequently,ballistic tests with eighteen bolted casing-flange structure specimens were conducted to validate the failure evaluation criterion.Parameter studies were then carried out using the validated FE models.Both the experimental and numerical results demonstrated the accuracy of the failure evaluation criterion.The failure evaluation criterion provided a quick and easy way to determine the failure mode of the casing connection area by using the materials and dimensions of the structure.Based on the failure evaluation criterion,designing the structural failure mode of the bolted casing-flange structure to be between flange failure and bolt failure can improve the impact resistance of the connection area of the aero-engine casings.This investigation revealed that the impact failure is not the unique criterion in evaluating the containment of the casing connection area,structural failure should also be involved in the evaluation criteria.