An effective design and optimum production strategies of a well depend on the accurate prediction of its bottom hole pressure(BHP)which may be calculated or determined by several methods.However,it is not practical te...An effective design and optimum production strategies of a well depend on the accurate prediction of its bottom hole pressure(BHP)which may be calculated or determined by several methods.However,it is not practical technically or economically to apply for a well test or to deploy a permanent pressure gauge in the bottom hole to predict the BHP.Consequently,several correlations and mechanistic models based on the knownsurfacemeasurementshave beendeveloped.Unfortunately,all these tools(correlations&mechanistic models)are limited to some conditions and intervals of application.Therefore,establish a global model that ensures a large coverage of conditions with a reduced cost and high accuracy becomes a necessity.In this study,we propose new models for estimating bottom hole pressure of vertical wells with multiphase flow.First,Artificial Neural Network(ANN)based on back propagation training(BP-ANN)with 12 neurons in its hidden layer is established using trial and error.The next methods correspond to optimized or evolved neural networks(optimize the weights and thresholds of the neural networks)with Grey Wolves Optimization(GWO),and then its accuracy to reach the global optima is compared with 2 other naturally inspired algorithms which are the most used in the optimization field:Genetic Algorithm(GA)and Particle Swarms Optimization(PSO).The models were developed and tested using 100 field data collected from Algerian fields and covering a wide range of variables.The obtained results demonstrate the superiority of the hybridization ANN-GWO compared with the 2 other hybridizations or with the BP learning alone.Furthermore,the evolved neural networks with these global optimization algorithms are strongly shown to be highly effective to improve the performance of the neural networks to estimate flowing BHP over existing approaches and correlations.展开更多
文摘An effective design and optimum production strategies of a well depend on the accurate prediction of its bottom hole pressure(BHP)which may be calculated or determined by several methods.However,it is not practical technically or economically to apply for a well test or to deploy a permanent pressure gauge in the bottom hole to predict the BHP.Consequently,several correlations and mechanistic models based on the knownsurfacemeasurementshave beendeveloped.Unfortunately,all these tools(correlations&mechanistic models)are limited to some conditions and intervals of application.Therefore,establish a global model that ensures a large coverage of conditions with a reduced cost and high accuracy becomes a necessity.In this study,we propose new models for estimating bottom hole pressure of vertical wells with multiphase flow.First,Artificial Neural Network(ANN)based on back propagation training(BP-ANN)with 12 neurons in its hidden layer is established using trial and error.The next methods correspond to optimized or evolved neural networks(optimize the weights and thresholds of the neural networks)with Grey Wolves Optimization(GWO),and then its accuracy to reach the global optima is compared with 2 other naturally inspired algorithms which are the most used in the optimization field:Genetic Algorithm(GA)and Particle Swarms Optimization(PSO).The models were developed and tested using 100 field data collected from Algerian fields and covering a wide range of variables.The obtained results demonstrate the superiority of the hybridization ANN-GWO compared with the 2 other hybridizations or with the BP learning alone.Furthermore,the evolved neural networks with these global optimization algorithms are strongly shown to be highly effective to improve the performance of the neural networks to estimate flowing BHP over existing approaches and correlations.