The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At presen...The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.展开更多
Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion ...Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion devices for micro-nano satellites. However, the detection of certain aspects, such as the evolution process of the liquid cone and the physical quantities at the cone apex, proves challenging due to the minute size of the needle tip and the vacuum environment in which they operate. Consequently, this paper introduces a computational fluid dynamics(CFD) model to gain insight into the formation process of the liquid cone on the tip apex of indium FEEP. The CFD model is based on electrohydrodynamic(EHD) equations and the volume of fluid(VOF) method. The entire cone formation process can be divided into three stages, and the time-dependent characteristics of the physical quantities at the cone apex are investigated. The influences of film thickness, apex radius size and applied voltage are compared.The results indicate a gradual increase in the values of electrostatic stress and surface tension stress at the cone apex over an initial period, followed by a rapid escalation within a short duration.Apex configurations featuring a small radius, thick film and high voltage exhibit a propensity for liquid cone formation, and the cone growth time decreases as the film thickness increases.Moreover, some unstable behavior is observed during the cone formation process.展开更多
Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil fo...Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells.展开更多
In this research, we explore the properties and applications of the mapping cone and its variant, the pinched mapping cone. The mapping cone is a construction that arises naturally in algebraic topology and is used to...In this research, we explore the properties and applications of the mapping cone and its variant, the pinched mapping cone. The mapping cone is a construction that arises naturally in algebraic topology and is used to study the homotopy type of spaces. It has several key properties, including its homotopy equivalence to the cofiber of a continuous map, and its ability to compute homotopy groups using the long exact sequence associated with the cofiber. We also provide an overview of the properties and applications of the mapping cone and the pinched mapping cone in algebraic topology. This work highlights the importance of these constructions in the study of homotopy theory and the calculation of homotopy groups. The study also points to the potential for further research in this area which includes the study of higher homotopy groups and the applications of these constructions to other areas of mathematics.展开更多
Pinus is an economically and ecologically important genus whose members are dominant components globally in low-latitude mountainous and mid-latitude temperate forests.Pinus species richness is currently concentrated ...Pinus is an economically and ecologically important genus whose members are dominant components globally in low-latitude mountainous and mid-latitude temperate forests.Pinus species richness is currently concentrated in subtropical mid-low latitudes of the Northern Hemisphere,differing from the latitudinal diversity gradient mostly recognized in woody angiosperms.How the present pattern was developing in Earth's past is still poorly studied,particularly in eastern Asia.Here,a new fossil species,Pinus shengxianica sp.nov.is described based on a fossil seed cone from the Late Miocene Shengxian Formation in Zhejiang,southeast China.A co-occurring cone is recognized as a known fossil species,Pinus speciosa Li.Extensive comparison of extant and fossil members of Pinus suggests P.shengxianica shares a striking cone similarity to Pinus merkusii and Pinus latteri(subsection Pinus)from tropical Southeast Asia in having annular bulges around the umbo on the apophysis.The morphological resemblance indicates these two extant low-latitude pines probably possess a close affinity with the present newly-discovered P.shengxianica and originated from East Asian mid-low latitude ancestors during this generic re-diversification in the Miocene.This scenario is consistent with the evolutionary trajectory reflected by the pine fossil history and molecular data,marking the Miocene as a key period for the origin and evolution of most extant pines globally.The co-occurrences of diverse conifers and broadleaved angiosperms preferring diverse niches demonstrate Late Miocene eastern Zhejiang was one of the hot spots for coniferophyte diversity and hosted a needled-broadleaved mixed forest with complex vegetation structure and an altitudinal zonation.展开更多
As the reproductive organ of the endangered species Fokienia hodginsii,the size of the cones is a constraint on the reproductive renewal of the population.In this study,the molecular basis of the influence of cone siz...As the reproductive organ of the endangered species Fokienia hodginsii,the size of the cones is a constraint on the reproductive renewal of the population.In this study,the molecular basis of the influence of cone size on F.hodginsii was elucidated by comparing the phenotype,biochemistry,and transcriptome of two cultivars of F.hodginsii(‘FJ431’and‘FJ415’).The two cultivars differed significantly in cone size,with FJ431 having a significantly larger cone size and weight than FJ415,1.32 and 1.90 times that of FJ415,respectively.RNA-Seq analysis of both cultivars retrieved 75,940 genes whose approximate functions were classified as the pathway of response to endogenous stimulus and response to hormone and showed significant differences in the auxin-activated signaling pathway,particularly the MAPK signaling pathway-plant.Furthermore,the endogenous IAA content was significantly higher in FJ431 than in FJ415,and 1.58 and 1.29 times more IAA was present in immature and mature cones,respectively.Moreover,exogenous IAA treatment significantly induced the expression of the MAPK pathway-related gene TRINITY_DN10564_c0_g1 and significantly inhibited the expression of the MAPK pathwayrelated gene TRINITY_DN17056_c0_g1.Our work suggests that IAA can affect the cone size of F.hodginsii,most probably through the MAPK pathway.This has high theoretical and practical significance for the improvement of genetic breeding and the further cultivation of quality germplasm resources of F.hodginsii.展开更多
Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recordi...Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recording the resistance to the cone tip (q<sub>c</sub> value). The measured q<sub>c</sub> values (after correction for the pore water pressure) are utilized to estimate soil type and associated soil properties based predominantly on empirical correlations. The most common cone tips have associated areas of 10 cm<sup>2</sup> and 15 cm<sup>2</sup>. Investigators also utilized significantly larger cone tips (33 cm<sup>2</sup> and 40 cm<sup>2</sup>) so that gravelly soils can be penetrated. Small cone tips (2 cm<sup>2</sup> and 5 cm<sup>2</sup>) are utilized for shallow soil investigations. The cone tip resistance measured at a particular depth is affected by the values above and below the depth of interest which results in a smoothing or blurring of the true bearing values. Extensive work has been carried out in mathematically modelling the smoothing function which results in the blurred cone bearing measurements. This paper outlines a technique which facilitates estimating the dominant parameters of the cone smoothing function from processing real cone bearing data sets. This cone calibration technique is referred to as the so-called CPSPE algorithm. The mathematical details of the CPSPE algorithm are outlined in this paper along with the results from a challenging test bed simulation.展开更多
目的观察运动伪影校正技术(MFT)对于改善肾动脉瘤锥形束CT(CBCT)图像质量的价值。方法前瞻性选取20例拟接受经导管动脉栓塞治疗的肾动脉瘤患者,于CBCT引导下行肾动脉造影,采用MFT处理运动伪影;对MFT校正前、后图像质量进行主、客观评价...目的观察运动伪影校正技术(MFT)对于改善肾动脉瘤锥形束CT(CBCT)图像质量的价值。方法前瞻性选取20例拟接受经导管动脉栓塞治疗的肾动脉瘤患者,于CBCT引导下行肾动脉造影,采用MFT处理运动伪影;对MFT校正前、后图像质量进行主、客观评价,评估其显示肾动脉、载瘤动脉及靶区血管树情况,测算单位密度像素平均值(mean)、标准差(SD)及血管边缘锐化误差率。结果MFT校正后,肾动脉瘤最大密度投影图像显示肾动脉、重建CBCT图像显示载瘤动脉均明显优于校正前(P均<0.05);利用Flightplan for Liver软件可自动提取清晰的血管树;肾动脉瘤CBCT图像SD及血管边缘锐化误差率明显减小而mean明显增加(P均<0.05)。结论MFT可有效改善肾动脉瘤CBCT图像质量。展开更多
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
文摘The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.
基金supported by National Natural Science Foundation of China(No.52075334)。
文摘Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion devices for micro-nano satellites. However, the detection of certain aspects, such as the evolution process of the liquid cone and the physical quantities at the cone apex, proves challenging due to the minute size of the needle tip and the vacuum environment in which they operate. Consequently, this paper introduces a computational fluid dynamics(CFD) model to gain insight into the formation process of the liquid cone on the tip apex of indium FEEP. The CFD model is based on electrohydrodynamic(EHD) equations and the volume of fluid(VOF) method. The entire cone formation process can be divided into three stages, and the time-dependent characteristics of the physical quantities at the cone apex are investigated. The influences of film thickness, apex radius size and applied voltage are compared.The results indicate a gradual increase in the values of electrostatic stress and surface tension stress at the cone apex over an initial period, followed by a rapid escalation within a short duration.Apex configurations featuring a small radius, thick film and high voltage exhibit a propensity for liquid cone formation, and the cone growth time decreases as the film thickness increases.Moreover, some unstable behavior is observed during the cone formation process.
基金supported by the National Science and Technology Major Project of China (No. 2011ZX05010-003)the National Natural Science Foundation of China (No. 10902093)
文摘Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells.
文摘In this research, we explore the properties and applications of the mapping cone and its variant, the pinched mapping cone. The mapping cone is a construction that arises naturally in algebraic topology and is used to study the homotopy type of spaces. It has several key properties, including its homotopy equivalence to the cofiber of a continuous map, and its ability to compute homotopy groups using the long exact sequence associated with the cofiber. We also provide an overview of the properties and applications of the mapping cone and the pinched mapping cone in algebraic topology. This work highlights the importance of these constructions in the study of homotopy theory and the calculation of homotopy groups. The study also points to the potential for further research in this area which includes the study of higher homotopy groups and the applications of these constructions to other areas of mathematics.
基金This work was funded in part by the National Natural Science Foundation of China(No.41872017)the Foundation of State Key Laboratory of Palaeobiology and Stratigraphy(Nanjing Institute of Geology and Palaeontology,CAS)(Nos.193113 and 183125)+1 种基金the Fundamental Research Funds for the Central Universities,CHD(Nos.300102272206,300102271402 and 300102271403)the Undergraduate Innovation and Entrepreneurship Project(No.S202210710194).
文摘Pinus is an economically and ecologically important genus whose members are dominant components globally in low-latitude mountainous and mid-latitude temperate forests.Pinus species richness is currently concentrated in subtropical mid-low latitudes of the Northern Hemisphere,differing from the latitudinal diversity gradient mostly recognized in woody angiosperms.How the present pattern was developing in Earth's past is still poorly studied,particularly in eastern Asia.Here,a new fossil species,Pinus shengxianica sp.nov.is described based on a fossil seed cone from the Late Miocene Shengxian Formation in Zhejiang,southeast China.A co-occurring cone is recognized as a known fossil species,Pinus speciosa Li.Extensive comparison of extant and fossil members of Pinus suggests P.shengxianica shares a striking cone similarity to Pinus merkusii and Pinus latteri(subsection Pinus)from tropical Southeast Asia in having annular bulges around the umbo on the apophysis.The morphological resemblance indicates these two extant low-latitude pines probably possess a close affinity with the present newly-discovered P.shengxianica and originated from East Asian mid-low latitude ancestors during this generic re-diversification in the Miocene.This scenario is consistent with the evolutionary trajectory reflected by the pine fossil history and molecular data,marking the Miocene as a key period for the origin and evolution of most extant pines globally.The co-occurrences of diverse conifers and broadleaved angiosperms preferring diverse niches demonstrate Late Miocene eastern Zhejiang was one of the hot spots for coniferophyte diversity and hosted a needled-broadleaved mixed forest with complex vegetation structure and an altitudinal zonation.
基金The“Eagle Program”of Fujian Province,funded by the Department of Human Resources and Social Security of Fujian ProvinceThe“Fujian Cypress 1st Generation Core Breeding Population Construction Research”(No.2021R1010004),funded by the Department of Science and Technology of Fujian Province.
文摘As the reproductive organ of the endangered species Fokienia hodginsii,the size of the cones is a constraint on the reproductive renewal of the population.In this study,the molecular basis of the influence of cone size on F.hodginsii was elucidated by comparing the phenotype,biochemistry,and transcriptome of two cultivars of F.hodginsii(‘FJ431’and‘FJ415’).The two cultivars differed significantly in cone size,with FJ431 having a significantly larger cone size and weight than FJ415,1.32 and 1.90 times that of FJ415,respectively.RNA-Seq analysis of both cultivars retrieved 75,940 genes whose approximate functions were classified as the pathway of response to endogenous stimulus and response to hormone and showed significant differences in the auxin-activated signaling pathway,particularly the MAPK signaling pathway-plant.Furthermore,the endogenous IAA content was significantly higher in FJ431 than in FJ415,and 1.58 and 1.29 times more IAA was present in immature and mature cones,respectively.Moreover,exogenous IAA treatment significantly induced the expression of the MAPK pathway-related gene TRINITY_DN10564_c0_g1 and significantly inhibited the expression of the MAPK pathwayrelated gene TRINITY_DN17056_c0_g1.Our work suggests that IAA can affect the cone size of F.hodginsii,most probably through the MAPK pathway.This has high theoretical and practical significance for the improvement of genetic breeding and the further cultivation of quality germplasm resources of F.hodginsii.
文摘Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recording the resistance to the cone tip (q<sub>c</sub> value). The measured q<sub>c</sub> values (after correction for the pore water pressure) are utilized to estimate soil type and associated soil properties based predominantly on empirical correlations. The most common cone tips have associated areas of 10 cm<sup>2</sup> and 15 cm<sup>2</sup>. Investigators also utilized significantly larger cone tips (33 cm<sup>2</sup> and 40 cm<sup>2</sup>) so that gravelly soils can be penetrated. Small cone tips (2 cm<sup>2</sup> and 5 cm<sup>2</sup>) are utilized for shallow soil investigations. The cone tip resistance measured at a particular depth is affected by the values above and below the depth of interest which results in a smoothing or blurring of the true bearing values. Extensive work has been carried out in mathematically modelling the smoothing function which results in the blurred cone bearing measurements. This paper outlines a technique which facilitates estimating the dominant parameters of the cone smoothing function from processing real cone bearing data sets. This cone calibration technique is referred to as the so-called CPSPE algorithm. The mathematical details of the CPSPE algorithm are outlined in this paper along with the results from a challenging test bed simulation.
文摘目的:主观评价和客观评估不同成像参数下CBCT的图像质量,分析图像质量的主观评价和客观评价间的关系。方法:分别采用6台不同品牌CBCT扫描仪〔3D Accuitomo(Morita)、i-CAT(Kavo)、5G(NewTom)、Smart3D(北京朗视)、DCT Pro(Vatech)、VGi(NewTom)〕,在各个品牌的典型曝光条件下(电压和电流强度不同)扫描空间分辨率模体和高仿真头模,7位医师对拍摄的CBCT图像进行主观评价打分,比较不同CBCT扫描仪的空间分辨率和对常见口腔解剖结构的可见性。客观评价指标采用各仪器所获的图像空间分辩率(LP/mm)。结果:7位医师的组内一致性和组间一致性均无显著性差异。主观评价New Tom 5G为2分,i-CAT为5分,其余4个品牌匀为4分,客观评价i-CAT的LP/mm为1.8,Smart3D为2.0,其余4个品牌为1.0~1.7。在相同管电流条件下,不同管电压的图像主观质量有显著性差异。在相同管电压条件下,不同管电流的图像主观质量有显著性差异。结论:图像质量的主客观评价具有一定的一致性,不同品牌之间的客观评价差异可能与电压、电流强度不同有关。
文摘目的观察运动伪影校正技术(MFT)对于改善肾动脉瘤锥形束CT(CBCT)图像质量的价值。方法前瞻性选取20例拟接受经导管动脉栓塞治疗的肾动脉瘤患者,于CBCT引导下行肾动脉造影,采用MFT处理运动伪影;对MFT校正前、后图像质量进行主、客观评价,评估其显示肾动脉、载瘤动脉及靶区血管树情况,测算单位密度像素平均值(mean)、标准差(SD)及血管边缘锐化误差率。结果MFT校正后,肾动脉瘤最大密度投影图像显示肾动脉、重建CBCT图像显示载瘤动脉均明显优于校正前(P均<0.05);利用Flightplan for Liver软件可自动提取清晰的血管树;肾动脉瘤CBCT图像SD及血管边缘锐化误差率明显减小而mean明显增加(P均<0.05)。结论MFT可有效改善肾动脉瘤CBCT图像质量。