期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Statistical characteristics of the equatorial boundary of the nightside auroral particle precipitation 被引量:1
1
作者 NIU YanYuan ZHANG XiaoXin +1 位作者 HE Fei JIANG Yong 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第9期1602-1608,共7页
Based on the auroral electron/ion precipitation boundary database observed by the DMSP satellites during 1984–2009, the characteristics of the nightside equatorial boundaries of the electron precipitation(B1E) and ... Based on the auroral electron/ion precipitation boundary database observed by the DMSP satellites during 1984–2009, the characteristics of the nightside equatorial boundaries of the electron precipitation(B1E) and the ion precipitation(B1I) in the Northern/Southern Hemispheres(NH/SH) are statistically investigated. The results show: That most of the boundaries are located between magnetic latitude(MLAT) of 60°–70° with the mean MLAT for B1E/B1 I to be 64.30°N/63.22°N and 64.48°S/63.26°S in the NH and SH, respectively, indicating that B1 E and B1 I in both hemispheres are located in conjugated magnetic field lines with B1 E ~1.2° poleward of B1I; that the MLAT of B1 E and B1 I in both hemispheres shift to lower MLAT(from ~70° to ~55°) as geomagnetic activity increases; that MLAT of both B1 E and B1 I and their differences slowly decrease from dusk to midnight with some difference in both hemispheres during different levels of geomagnetic activities; that B1 E and B1 I in both hemisphere decrease linearly with Kp and exponentially with Dst, AE, and SYM-H, respectively, demonstrating that auroral particle precipitation is closely related with geomagnetic activity; that in different magnetic local time(MLT) sectors, the changing rates of the boundaries with Kp are different, and the rates of B1 E are generally larger than that of B1 I, implying that the difference between B1 E and B1 I reduce with increasing geomagnetic activity. Compared with previous studies, the statistical results based on the long-term large database in this paper can well reflect the properties of the equatorial boundaries of auroral precipitation and may be used for physical modeling or space weather forecasting in future. 展开更多
关键词 auroral particle precipitation equatorial boudanry statistical characteristics geomagnetic activity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部