期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
A Kind of Boundary Element Methods for Boundary Value Problem of Helmholtz Equation
1
作者 张然 姜正义 马富明 《Northeastern Mathematical Journal》 CSCD 2004年第3期253-256,共4页
1.Problems for electromagnetic scattering are of significant importance in many areas oftechnology.In this paper we discuss the scattering problem of electromagnetic wave incidentby using boundary element method assoc... 1.Problems for electromagnetic scattering are of significant importance in many areas oftechnology.In this paper we discuss the scattering problem of electromagnetic wave incidentby using boundary element method associated with splines.The problem is modelled by aboundary value problem for the Helmholtz equation 展开更多
关键词 boudary element method helmholtz equation spline
下载PDF
Numerical solution of Poisson equation with wavelet bases of Hermite cubic splines on the interval
2
作者 向家伟 陈雪峰 李锡夔 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第10期1325-1334,共10页
A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite elem... A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation. 展开更多
关键词 Poisson equation Hermite cubic spline wavelet lifting scheme waveletbased finite element method
下载PDF
FINITE ELEMENT AND DISCONTINUOUS GALERKIN METHOD FOR STOCHASTIC HELMHOLTZ EQUATION IN TWO-AND THREE-DIMENSIONS 被引量:2
3
作者 Yanzhao Cao Ran Zhang Kai Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2008年第5期702-715,共14页
In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerica... In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerical solutions. The effects of the noises on the accuracy of the approximations are illustrated. Numerical experiments are carried out to verify our theoretical results. 展开更多
关键词 Stochastic partial differential equation Finite element method Discontinuous Galerkin method Stochastic helmholtz equation.
原文传递
INFINITE ELEMENT METHOD FOR THE EXTERIOR PROBLEMS OF THE HELMHOLTZ EQUATIONS 被引量:2
4
作者 Lung-an Ying (School of Mathematical Sciences, Peking University, Beijing 100871, China) 《Journal of Computational Mathematics》 SCIE EI CSCD 2000年第6期657-672,共16页
There are two cases of the exterior problems of the Helmholtz equation. If λ ≥ 0 the bilinear form is coercive, and if λ < 0 it is the scattering problem. We give a new approach of the infinite element method, w... There are two cases of the exterior problems of the Helmholtz equation. If λ ≥ 0 the bilinear form is coercive, and if λ < 0 it is the scattering problem. We give a new approach of the infinite element method, which enables us to solve these exterior problems as well as corner problems. A numerical example of the scattering problem is given. [ABSTRACT FROM AUTHOR] 展开更多
关键词 helmholtz equation exterior problem infinite element method
原文传递
Fast multipole accelerated boundary element method for the Helmholtz equation in acoustic scattering problems 被引量:2
5
作者 LI ShanDe GAO GuiBing +2 位作者 HUANG QiBai LIU WeiQi CHEN Jun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1405-1410,共6页
We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements... We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems. 展开更多
关键词 fast multipole method boundary element method helmholtz equation acoustic scattering problems.
原文传递
Analysis of Numerical Integration Error for Bessel Integral Identity in Fast Multipole Method for 2D Helmholtz Equation 被引量:6
6
作者 吴海军 蒋伟康 刘轶军 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第6期690-693,共4页
In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced... In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced. Taking advantage of the relationship between Euler-Maclaurin formula and trapezoidal quadrature rule,and the relationship between trapezoidal and square quadrature rule,sharp computable bound with analytical form on the error of numerical integration of Bessel integral identity by square quadrature rule is derived in this paper. Numerical experiments are presented at the end to demonstrate the accuracy of the sharp computable bound on the numerical integration error. 展开更多
关键词 Bessel integralidentity fast multipole method boundary element method 2D helmholtz equation
原文传递
Diagonal form fast multipole boundary element method for 2D acoustic problems based on Burton-Miller boundary integral equation formulation and its applications 被引量:1
7
作者 吴海军 蒋伟康 Y.J.LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第8期981-996,共16页
This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the... This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM. 展开更多
关键词 2D acoustic wave problem helmholtz equation fast multipole method boundary element method
下载PDF
A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation 被引量:2
8
作者 Lin Mu Junping Wang +1 位作者 Xiu Ye Shan Zhao 《Communications in Computational Physics》 SCIE 2014年第5期1461-1479,共19页
A weak Galerkin(WG)method is introduced and numerically tested for the Helmholtz equation.This method is flexible by using discontinuous piecewise polynomials and retains the mass conservation property.At the same tim... A weak Galerkin(WG)method is introduced and numerically tested for the Helmholtz equation.This method is flexible by using discontinuous piecewise polynomials and retains the mass conservation property.At the same time,the WG finite element formulation is symmetric and parameter free.Several test scenarios are designed for a numerical investigation on the accuracy,convergence,and robustness of the WG method in both inhomogeneous and homogeneous media over convex and non-convex domains.Challenging problems with high wave numbers are also examined.Our numerical experiments indicate that the weak Galerkin is a finite element technique that is easy to implement,and provides very accurate and robust numerical solutions for the Helmholtz problem with high wave numbers. 展开更多
关键词 Galerkin finite element methods discrete gradient helmholtz equation large wave numbers weak Galerkin.
原文传递
A Numerical Analysis of the Weak Galerk in Method for the Helmholtz Equation with High Wave Number 被引量:1
9
作者 Yu Du Zhimin Zhang 《Communications in Computational Physics》 SCIE 2017年第6期133-156,共24页
We study the error analysis of the weak Galerkin finite element method in[24,38](WG-FEM)for the Helmholtz problem with large wave number in two and three dimensions.Using a modified duality argument proposed by Zhu an... We study the error analysis of the weak Galerkin finite element method in[24,38](WG-FEM)for the Helmholtz problem with large wave number in two and three dimensions.Using a modified duality argument proposed by Zhu and Wu,we obtain the pre-asymptotic error estimates of the WG-FEM.In particular,the error estimates with explicit dependence on the wave number k are derived.This shows that the pollution error in the broken H1-norm is bounded by O(k(kh)^(2p))under mesh condition k^(7/2)h^(2)≤C0 or(kh)^(2)+k(kh)^(p+1)≤C_(0),which coincides with the phase error of the finite element method obtained by existent dispersion analyses.Here h is the mesh size,p is the order of the approximation space and C_(0) is a constant independent of k and h.Furthermore,numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect. 展开更多
关键词 Weak Galerkin finite element method helmholtz equation large wave number STABILITY error estimates
原文传递
A simplified two-dimensional boundary element method with arbitrary uniform mean flow 被引量:2
10
作者 Bassem Barhoumi Safa Ben Hamouda Jamel Bessrour 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期207-221,共15页
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr... To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation. 展开更多
关键词 Two-dimensional convected helmholtz equation Two-dimensional convected Green’s function Two-dimensional convected boundary element method Arbitrary uniform mean flow Two-dimensional acoustic sources
下载PDF
A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems 被引量:4
11
作者 Chang-Jun Zheng Hai-Bo Chen Lei-Lei Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第2期219-232,共14页
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations s... This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency. 展开更多
关键词 helmholtz equation·Boundary element method·Half-space/plane-symmetric problem·Wideband fast multipole method·Noise barrier
下载PDF
Directional H^(2) Compression Algorithm: Optimisations and Application to a Discontinuous Galerkin BEM for the Helmholtz Equation
12
作者 Nadir-Alexandre Messaï Sebastien Pernet Abdesselam Bouguerra 《Communications in Computational Physics》 SCIE 2022年第5期1585-1635,共51页
This study aimed to specialise a directional H^(2)(DH^(2))compression to matrices arising from the discontinuous Galerkin(DG)discretisation of the hypersingular equation in acoustics.The significantfinding is an algor... This study aimed to specialise a directional H^(2)(DH^(2))compression to matrices arising from the discontinuous Galerkin(DG)discretisation of the hypersingular equation in acoustics.The significantfinding is an algorithm that takes a DG stiffness matrix andfinds a near-optimal DH^(2) approximation for low and high-frequency problems.We introduced the necessary special optimisations to make this algorithm more efficient in the case of a DG stiffness matrix.Moreover,an automatic parameter tuning strategy makes it easy to use and versatile.Numerical comparisons with a classical Boundary Element Method(BEM)show that a DG scheme combined with a DH^(2) gives better computational efficiency than a classical BEM in the case of high-order finite elements and hp heterogeneous meshes.The results indicate that DG is suitable for an auto-adaptive context in integral equations. 展开更多
关键词 Integral equation boundary element method helmholtz equation DISCONTINUOUS GALERKIN directional H^(2)-matrix low-rank approximation all frequency compression algorithm
原文传递
A Modified Helmholtz Equation with Impedance Boundary Conditions
13
作者 Robert S.Callihan Aihua W.Wood 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第6期703-718,共16页
Here considered is the problem of transient electromagnetic scattering from overfilled cavities embedded in an impedance ground plane.An artificial boundary condition is introduced on a semicircle enclosing the cavity... Here considered is the problem of transient electromagnetic scattering from overfilled cavities embedded in an impedance ground plane.An artificial boundary condition is introduced on a semicircle enclosing the cavity that couples the fields from the infinite exterior domain to those fields inside.A Green’s function solution is obtained for the exterior domain,while the interior problem is solved using finite element method.Well-posedness of the associated variational formulation is achieved and convergence and stability of the numerical scheme confirmed.Numerical experiments show the accuracy and robustness of the method. 展开更多
关键词 helmholtz equation impedance boundary conditions finite element method
原文传递
Collocation Method for Solving the Generalized KdV Equation
14
作者 Turabi Geyikli 《Journal of Applied Mathematics and Physics》 2020年第6期1123-1134,共12页
In this work, we have obtained numerical solutions of the generalized Korteweg-de Vries (GKdV) equation by using septic B-spline collocation finite element method. The suggested numerical algorithm is controlled by ap... In this work, we have obtained numerical solutions of the generalized Korteweg-de Vries (GKdV) equation by using septic B-spline collocation finite element method. The suggested numerical algorithm is controlled by applying test problems including;single soliton wave. Our numerical algorithm, attributed to a Crank Nicolson approximation in time, is unconditionally stable. To control the performance of the newly applied method, the error norms, <em>L</em><sub>2</sub> and <em>L</em><sub>∞</sub> and invariants <em>I</em><sub>1</sub>, <em>I</em><sub>2</sub> and <em>I</em><sub>3</sub> have been calculated. Our numerical results are compared with some of those available in the literature. 展开更多
关键词 Generalized Korteweg-de Vries equation Finite element method COLLOCATION Septic B-spline SOLITON
下载PDF
基于等几何分析的边界元法求解Helmholtz问题 被引量:6
15
作者 王现辉 乔慧 +1 位作者 张小明 谷金良 《计算物理》 CSCD 北大核心 2017年第1期61-66,共6页
将基于一类局部双变量B样条函数的等几何分析方法和Burton-Miller方法相结合,分析三维Helmholtz问题.对于某些从二维参数域映射到三维空间具有奇异点的参数曲面,该方法可以有效地避免奇异点处大量奇异与近奇异积分的计算.数值算例表明... 将基于一类局部双变量B样条函数的等几何分析方法和Burton-Miller方法相结合,分析三维Helmholtz问题.对于某些从二维参数域映射到三维空间具有奇异点的参数曲面,该方法可以有效地避免奇异点处大量奇异与近奇异积分的计算.数值算例表明该方法具有较好的计算精度和计算效率.复杂问题的分析表明,该方法具有良好的工程应用前景. 展开更多
关键词 等几何分析 helmholtz问题 边界元法 CAD模型 局部双变量B样条函数
下载PDF
Chebyshev谱元方法结合并行算法求解三维区域的Helmholtz方程 被引量:4
16
作者 朱昌允 秦国良 徐忠 《应用力学学报》 CAS CSCD 北大核心 2012年第3期247-251,350,共5页
本文探讨了采用Chebyshev谱元方法结合并行计算求解三维区域的Helmholtz方程问题。首先应用变分方法,得到了带有第一类边界条件的三维区域Helmholtz方程的弱形式。然后在三维的标准单元内,采用Chebyshev正交多项式展开函数u和试函数v,... 本文探讨了采用Chebyshev谱元方法结合并行计算求解三维区域的Helmholtz方程问题。首先应用变分方法,得到了带有第一类边界条件的三维区域Helmholtz方程的弱形式。然后在三维的标准单元内,采用Chebyshev正交多项式展开函数u和试函数v,并且将其带入弱形式方程,通过积分,得到单元刚度矩阵;通过合成单元刚度矩阵,得到总体矩阵。最后通过基于MPI的并行计算,求解了以总体矩阵为系数的方程组,得到了Helmholtz方程的数值解,和解析解对比表明了数值解的正确性,并且数值解具有8阶精度。在并行求解方程组过程中,充分利用矩阵的对称性和矢量存储来获取上三角元素,这大幅的节约了存储量和计算进程间的通讯量,获得的并行效率可达76.6%。 展开更多
关键词 谱元方法 helmholtz方程 并行计算
下载PDF
伸缩虚拟边界元法解二维Helmholtz外问题 被引量:7
17
作者 向宇 黄玉盈 《力学学报》 EI CSCD 北大核心 2003年第3期272-279,共8页
以位势理论为基础,提出了求解Helmholtz外问题的伸缩虚拟边界元法.给出了该方法在全波数域内获得唯一解的严格数学证明,其核心是通过伸缩虚拟边界使对偶内问题的特征频率(本征值)避开与波数重合,从而保证了解的唯一性,同以往前人提出的... 以位势理论为基础,提出了求解Helmholtz外问题的伸缩虚拟边界元法.给出了该方法在全波数域内获得唯一解的严格数学证明,其核心是通过伸缩虚拟边界使对偶内问题的特征频率(本征值)避开与波数重合,从而保证了解的唯一性,同以往前人提出的几种解法途径相比,该法简单得多;通过诸多边界曲线形状和不同边界量的声辐射算例,从计算精度、稳定性以及克服解的非唯一性等方面,对该方法进行了检验.计算结果表明:对远场或近场辐射声压,该方法都具有非常高的效率和精度. 展开更多
关键词 helmholtz外问题 伸缩虚拟边界元法 边界积分方程 唯一性 位势理论 可压缩流体 结构声辐射
下载PDF
三维Helmholtz方程外边值问题的虚边界元法 被引量:5
18
作者 马健军 祝家麟 贾丽君 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期14-18,共5页
基于位势的延拓,推导出三维虚边界积分方程.通过选择不同的虚边界,避免相应内问题的特征值与波数重合,从而保证解的唯一性.数值算例验证了该方法求解任意波数三维Helmholtz方程外边值问题的有效性.
关键词 helmholtz方程外边值问题 双层位势 单层位势 虚边界元
下载PDF
Helmholtz方程有限元方法的精度改进 被引量:2
19
作者 张瑞 《科学技术与工程》 北大核心 2012年第17期4065-4068,共4页
Helmholtz方程在电磁学、声学等领域的应用都十分广泛,但实际应用中往往不能得出解析解,故现实中常用有限元方法求出高精度的数值解。针对二维Helmholtz方程的性质,分别采用双线性插值和三角插值的方法构造有限元空间的形函数,并推导了... Helmholtz方程在电磁学、声学等领域的应用都十分广泛,但实际应用中往往不能得出解析解,故现实中常用有限元方法求出高精度的数值解。针对二维Helmholtz方程的性质,分别采用双线性插值和三角插值的方法构造有限元空间的形函数,并推导了刚度矩阵和荷载向量。采用数学软件MATLAB分别做了数值仿真,得出了数值解与解析解之间的误差数据。通过与采用双线性插值构造的有限元空间对比,用数值仿真证明了采用三角插值方法构造有限元空间时,数值解具有更好的精度,且适用于波数较大的情形。 展开更多
关键词 helmholtz方程 有限元 形函数 精度
下载PDF
求解三维Helmholtz方程外边值问题的一种新的边界积分方程法
20
作者 金朝嵩 《重庆建筑工程学院学报》 CSCD 1995年第1期43-49,共7页
本文应用多重互反法(themultiplereciprocitymethod)给出了求解三维Helmholtz外边值问题的一种新的边界积分方程法。首先,在限制解在无穷远处性态的Dirichlet条件下,导出了解在外区... 本文应用多重互反法(themultiplereciprocitymethod)给出了求解三维Helmholtz外边值问题的一种新的边界积分方程法。首先,在限制解在无穷远处性态的Dirichlet条件下,导出了解在外区域及边界上的积分表达式,其特点在于积分核是由Laplace方程的常规基本解衍生出来的无穷级数且与波数无关。在此基础上,对Dirichlet问题和Neumann问题导出了边界积分方程,并对数值求解这些方程所涉及的一些问题进行了评述,最后,总结了这一方法与传统边界元法相比较所具有的优点。 展开更多
关键词 边界权分方程 边值 多重互反法 边界元法
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部