Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may caus...Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may cause signal integrity problem in MTCMOS circuits.We propose a methodology for reducing ground bouncing noise under the wake-up delay constraint.An improved two-stage parallel power gating structure that can suppress the ground bouncing noise through turn on sets of sleep transistors consecutively is proposed.The size of each sleep transistor is optimized by a novel sizing algorithm based on a simple discharging model.Simulation results show that the proposed techniques achieve at least 23% improvement in the product of the peak amplitude of ground bouncing noise and the wake-up time when compared with other existing techniques.展开更多
In this paper,the fow physics and impact dynamics of a sphere bouncing on a water surface are studied experimentally.During the experiments,high-speed camera photography techniques are used to capture the cavity and f...In this paper,the fow physics and impact dynamics of a sphere bouncing on a water surface are studied experimentally.During the experiments,high-speed camera photography techniques are used to capture the cavity and free surface evolution when the sphere impacts and skips on the water surface.The infuences of the impact velocity(v_(1))and impact angle(θ_(1))of the sphere on the bouncing fow physics are also investigated,including the cavitation evolution,motion characteristics,and bounding law.Regulations for the relationship between v_(1)andθ_(1)to judge whether the sphere can bounce on the water surface are presented and analyzed by summarizing a large amount of experimental data.In addition,the efect ofθ_(1)on the energy loss of the sphere is also analyzed and discussed.The experiment results show that there is a ftted curve of v_(1)=17.5θ_(1)−45.5 determining the relationship between the critical initial velocity and angle whether the sphere bounces on the water surface.展开更多
The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle disperse...The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.展开更多
We study the constraint on deceleration parameter q from the recent SNela Gold dataset and observational Hubble data by using a model-independent deceleration parameter q(z) = 1/2 - a/(1 + z)^b under the flve-dim...We study the constraint on deceleration parameter q from the recent SNela Gold dataset and observational Hubble data by using a model-independent deceleration parameter q(z) = 1/2 - a/(1 + z)^b under the flve-dimensional bounce cosmological model. For the cases of SNeIa Gold dataset, Hubble data, and their combination, the present results show that the constraints on transition redshift ZT are 0.35-0.07^+0.14,0.68-0.58^+1.47,and 0.55-0.09^+0.18 with 1σ errors,respectively.展开更多
In the framework of a five-dimensional (5D) bounce cosmological model, a useful function f(z) is obtained by giving a concrete expression of deceleration parameter q(z) = q1 +q2/1+1n(1+z) Then using the obt...In the framework of a five-dimensional (5D) bounce cosmological model, a useful function f(z) is obtained by giving a concrete expression of deceleration parameter q(z) = q1 +q2/1+1n(1+z) Then using the obtained Hubble parameter H(z) according to the function f(z), we constrain the accelerating universe from recent cosmic observations: the 192 ESSENCE SNe Ia and the 9 observational H(z) data. The best fitting values of transition redshift zT and current deceleration parameter q0 are given as zT =0.65-0.12^+0.25 and q0=-0.76-0.15^+0.15(1σ). Furthermore, in the 5D bounce model it can be seen that the evolution of equation of state (EOS) for dark energy Wde can cross over -1 at about z = 0.23 and the current value W0de : =-1.15 〈 -1. On the other hand, by giving a concrete expression of model-independent EOS of dark energy Wde, in the 5D bounce model we obtain the best fitting values zT = 0 .66-0.08^+0.11 and q0=-0.69-0.10^+0.10(1σ) from the recently observed data: the 192 ESSENCE SNe Ia, the observational H(z) data, the 3-year Wilkinson Microwave Anisotropy Probe (WMAP), the Sloan Digital Sky Survey (SDSS) baryon acoustic peak and the x-ray gas mass fraction in clusters.展开更多
Aerospace electromagnetic relay is an electric component that has been widely used in aerospace industry.Contact bounce and contact breakaway for initial velocity are the key parameters that have strong influence on r...Aerospace electromagnetic relay is an electric component that has been widely used in aerospace industry.Contact bounce and contact breakaway for initial velocity are the key parameters that have strong influence on reliability and electric life of the relay.Generally,it is difficult to optimize these two parameters simultaneously.In this paper,according to kinetics theory and structural mechanics,a dynamic reaction calculation model of the relay that describes contact bounce and breakaway for initial velocity is proposed.Under the constraints of contact gap and contact force,the optimal combination of debugging parameters is obtained by the application of orthogonal design.It considers the reduction of contact bounce and the augmentation of breakaway for initial velocity as the optimization objectives,and takes the debugging parameters as the optimization variables.All these above ensure the increase of contact breakaway for initial velocity and the decrease of contact bounce simultaneously,and contact arc erosion is also reduced.展开更多
The “shooting and bouncing rays” (SBR) technique is used to analyze the electromagnetic scattering characters of ocean rough surfaces varying with time. Some numerical results are presented and compared with the met...The “shooting and bouncing rays” (SBR) technique is used to analyze the electromagnetic scattering characters of ocean rough surfaces varying with time. Some numerical results are presented and compared with the method of moments, and some factors, such as the incident angle, polarization and frequency are investigated which influence on electromagnetic scattering characters of ocean rough surfaces.展开更多
One-dimensional particle simulations have been conducted to study the interaction between a radio-frequency electrostatic wave and electrons with bouncing motion.It is shown that bounce resonance heating can occur at ...One-dimensional particle simulations have been conducted to study the interaction between a radio-frequency electrostatic wave and electrons with bouncing motion.It is shown that bounce resonance heating can occur at the first few harmonics of the bounce frequency(nω_(b),n=1,2,3,...).In the parameter regimes in which bounce resonance overlaps with Landau resonance,the higher harmonic bounce resonance may accelerate electrons at the velocity much lower than the wave phase velocity to Landau resonance region,enhancing Landau damping of the wave.Meanwhile,Landau resonance can increase the number of electrons in the lower harmonic bounce resonance region.Thus electrons can be efficiently heated.The result might be applicable for collisionless electron heating in low-temperature plasma discharges.展开更多
In this paper, by using the topological degree method and some limiting arguments, the existence of admissible periodic bouncing solutions for a class of non-conservative semi-linear impact equations is proved.
The interaction of a falling drop(diluted aqueous solution of ink in various concentrations)with a target fluid(partially degassed tap water)has been tracked by means of high-resolution video recording and photography...The interaction of a falling drop(diluted aqueous solution of ink in various concentrations)with a target fluid(partially degassed tap water)has been tracked by means of high-resolution video recording and photography.The experimental setup has carefully been prepared in order to preserve the axial symmetry of initial conditions.Three regimes of interaction have been identified accordingly(depending on the drop velocity as controlled by the distance of fall):rapid droplet coalescence,rebound with the conservation of the drop volume and shape,and partial coalescence.Previous findings are recovered and confirmed,and enriched with heretofore unseen observations of complex partial coalescence.An extensive set of data is reported to support understanding of the observed dynamics and their repeatability and reproducibility.The overall study has been carried out with the express intent to spur the future development of detailed mathematical models and numerical methods suited for this kind of problems.展开更多
This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation propert...This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation properties. The modified approach uses a combination of the tradional ceiling bounce method and a statistical approach. The effects of different transmitter-receiver separations and height of the ceiling on path loss and delay spread are studied in detail.展开更多
A solid ball of mass m, size r and spin ω about an axis through its center is dropped freely from a height h on a rough horizontal plane. Assuming its angular momentum is parallel to the horizontal plane upon impact ...A solid ball of mass m, size r and spin ω about an axis through its center is dropped freely from a height h on a rough horizontal plane. Assuming its angular momentum is parallel to the horizontal plane upon impact it bounces repeatedly drifting on a vertical plane. We analyze the kinematics of the bouncing ball assuming the impacts are semi-elastic without slipping. By varying the spin and relevant parameters, a robust Mathematica [1] program enables simulating the trajectories.展开更多
基金Supported by the National Natural Science Foundation of China (No. 6087001)
文摘Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may cause signal integrity problem in MTCMOS circuits.We propose a methodology for reducing ground bouncing noise under the wake-up delay constraint.An improved two-stage parallel power gating structure that can suppress the ground bouncing noise through turn on sets of sleep transistors consecutively is proposed.The size of each sleep transistor is optimized by a novel sizing algorithm based on a simple discharging model.Simulation results show that the proposed techniques achieve at least 23% improvement in the product of the peak amplitude of ground bouncing noise and the wake-up time when compared with other existing techniques.
基金the Fundamental Research Funds for the Central Universities(30918012201)the Fund of the State Key Laboratory(6142604190302).
文摘In this paper,the fow physics and impact dynamics of a sphere bouncing on a water surface are studied experimentally.During the experiments,high-speed camera photography techniques are used to capture the cavity and free surface evolution when the sphere impacts and skips on the water surface.The infuences of the impact velocity(v_(1))and impact angle(θ_(1))of the sphere on the bouncing fow physics are also investigated,including the cavitation evolution,motion characteristics,and bounding law.Regulations for the relationship between v_(1)andθ_(1)to judge whether the sphere can bounce on the water surface are presented and analyzed by summarizing a large amount of experimental data.In addition,the efect ofθ_(1)on the energy loss of the sphere is also analyzed and discussed.The experiment results show that there is a ftted curve of v_(1)=17.5θ_(1)−45.5 determining the relationship between the critical initial velocity and angle whether the sphere bounces on the water surface.
基金supported by National Natural Science Foundation of China National Natural Science Foundation of China (41421003 and 41627805)
文摘The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10573003, 10647110, 10703001 and 10747113 DUT (893326), and the National Basic Research Programme of China under Grant No 2003CB716300.
文摘We study the constraint on deceleration parameter q from the recent SNela Gold dataset and observational Hubble data by using a model-independent deceleration parameter q(z) = 1/2 - a/(1 + z)^b under the flve-dimensional bounce cosmological model. For the cases of SNeIa Gold dataset, Hubble data, and their combination, the present results show that the constraints on transition redshift ZT are 0.35-0.07^+0.14,0.68-0.58^+1.47,and 0.55-0.09^+0.18 with 1σ errors,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10573004 and 10703001)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 2007141034)
文摘In the framework of a five-dimensional (5D) bounce cosmological model, a useful function f(z) is obtained by giving a concrete expression of deceleration parameter q(z) = q1 +q2/1+1n(1+z) Then using the obtained Hubble parameter H(z) according to the function f(z), we constrain the accelerating universe from recent cosmic observations: the 192 ESSENCE SNe Ia and the 9 observational H(z) data. The best fitting values of transition redshift zT and current deceleration parameter q0 are given as zT =0.65-0.12^+0.25 and q0=-0.76-0.15^+0.15(1σ). Furthermore, in the 5D bounce model it can be seen that the evolution of equation of state (EOS) for dark energy Wde can cross over -1 at about z = 0.23 and the current value W0de : =-1.15 〈 -1. On the other hand, by giving a concrete expression of model-independent EOS of dark energy Wde, in the 5D bounce model we obtain the best fitting values zT = 0 .66-0.08^+0.11 and q0=-0.69-0.10^+0.10(1σ) from the recently observed data: the 192 ESSENCE SNe Ia, the observational H(z) data, the 3-year Wilkinson Microwave Anisotropy Probe (WMAP), the Sloan Digital Sky Survey (SDSS) baryon acoustic peak and the x-ray gas mass fraction in clusters.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50777010)
文摘Aerospace electromagnetic relay is an electric component that has been widely used in aerospace industry.Contact bounce and contact breakaway for initial velocity are the key parameters that have strong influence on reliability and electric life of the relay.Generally,it is difficult to optimize these two parameters simultaneously.In this paper,according to kinetics theory and structural mechanics,a dynamic reaction calculation model of the relay that describes contact bounce and breakaway for initial velocity is proposed.Under the constraints of contact gap and contact force,the optimal combination of debugging parameters is obtained by the application of orthogonal design.It considers the reduction of contact bounce and the augmentation of breakaway for initial velocity as the optimization objectives,and takes the debugging parameters as the optimization variables.All these above ensure the increase of contact breakaway for initial velocity and the decrease of contact bounce simultaneously,and contact arc erosion is also reduced.
文摘The “shooting and bouncing rays” (SBR) technique is used to analyze the electromagnetic scattering characters of ocean rough surfaces varying with time. Some numerical results are presented and compared with the method of moments, and some factors, such as the incident angle, polarization and frequency are investigated which influence on electromagnetic scattering characters of ocean rough surfaces.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFE0300406)the National Natural Science Foundation of China(Grant Nos.11975272,12075276,11805133,11705236,and 11375234)。
文摘One-dimensional particle simulations have been conducted to study the interaction between a radio-frequency electrostatic wave and electrons with bouncing motion.It is shown that bounce resonance heating can occur at the first few harmonics of the bounce frequency(nω_(b),n=1,2,3,...).In the parameter regimes in which bounce resonance overlaps with Landau resonance,the higher harmonic bounce resonance may accelerate electrons at the velocity much lower than the wave phase velocity to Landau resonance region,enhancing Landau damping of the wave.Meanwhile,Landau resonance can increase the number of electrons in the lower harmonic bounce resonance region.Thus electrons can be efficiently heated.The result might be applicable for collisionless electron heating in low-temperature plasma discharges.
基金Supported by the NNSF of China(11571249)NSF of JiangSu Province(BK20171275)Supported by the grant of Innovative Training Program of College Students in Jiangsu province(201410324001Z)
文摘In this paper, by using the topological degree method and some limiting arguments, the existence of admissible periodic bouncing solutions for a class of non-conservative semi-linear impact equations is proved.
基金supported by the Russian Science Foundation(Project 19-19-00598“Hydrodynamics and energetics of drops and droplet jets:formation,motion,break-up,interaction with the contact surface”).
文摘The interaction of a falling drop(diluted aqueous solution of ink in various concentrations)with a target fluid(partially degassed tap water)has been tracked by means of high-resolution video recording and photography.The experimental setup has carefully been prepared in order to preserve the axial symmetry of initial conditions.Three regimes of interaction have been identified accordingly(depending on the drop velocity as controlled by the distance of fall):rapid droplet coalescence,rebound with the conservation of the drop volume and shape,and partial coalescence.Previous findings are recovered and confirmed,and enriched with heretofore unseen observations of complex partial coalescence.An extensive set of data is reported to support understanding of the observed dynamics and their repeatability and reproducibility.The overall study has been carried out with the express intent to spur the future development of detailed mathematical models and numerical methods suited for this kind of problems.
文摘This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation properties. The modified approach uses a combination of the tradional ceiling bounce method and a statistical approach. The effects of different transmitter-receiver separations and height of the ceiling on path loss and delay spread are studied in detail.
文摘A solid ball of mass m, size r and spin ω about an axis through its center is dropped freely from a height h on a rough horizontal plane. Assuming its angular momentum is parallel to the horizontal plane upon impact it bounces repeatedly drifting on a vertical plane. We analyze the kinematics of the bouncing ball assuming the impacts are semi-elastic without slipping. By varying the spin and relevant parameters, a robust Mathematica [1] program enables simulating the trajectories.