期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ferroelectric engineering:Enhanced thermoelectric performance by local structural heterogeneity
1
作者 Xiangyu Meng Shuo Chen +9 位作者 Haoyang Peng Hui Bai Shujun Zhang Xianli Su Gangjian Tan Gustaaf Van Tendeloo Zhigang Sun Qingjie Zhang Xinfeng Tang Jinsong Wu 《Science China Materials》 SCIE EI CAS CSCD 2022年第6期1615-1622,共8页
Although traditional ferroelectric materials are usually dielectric and nonconductive,GeTe is a typical ferroelectric semiconductor,possessing both ferroelectric and semiconducting properties.GeTe is also a widely stu... Although traditional ferroelectric materials are usually dielectric and nonconductive,GeTe is a typical ferroelectric semiconductor,possessing both ferroelectric and semiconducting properties.GeTe is also a widely studied thermoelectric material,whose performance has been optimized by doping with various elements.However,the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents.Herein,based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals,we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls,exposed to an electric field and temperature.Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb^(3+)dopant and the Ge-vacancies,leading to the increased number of charged domain walls and a much improved thermoelectric performance.This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity. 展开更多
关键词 charged domain walls bound charge local structural heterogeneity high-performance thermoelectric
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部