We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to sol...We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff botmdary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.展开更多
The generality to anisotropy of the earth media can be proved by a lot of research and observation, which is shown by the elastic parameters of the seismic wave changes with the direction of propagation. Actually, com...The generality to anisotropy of the earth media can be proved by a lot of research and observation, which is shown by the elastic parameters of the seismic wave changes with the direction of propagation. Actually, computational efficiency is very low, when simulating on the elastic anisotropie media, for the complicated and multi-parameters computation, which becomes a disadvantage to the succeeding migration and imaging pro-cedure. Using acoustic approximation in the VT[ media is an advisable simplification for the elastic wave simu-lation in that setting S-velocity into zero can greatly reduce the computational amount as well as get the same simulation effect. The authors get an acoustic approximation formula, then gain an anisotropic wave equation with 2-order in time and 4-order in space by inverse Fourier transformation, and dispel with the dispersion by adopting the high order finite difference operator in space and remove the edge reflection using the absorption attenuation boundary. Finally, the feasibility and effectiveness of this algorithm can be proved by the snaps and synthetic records.展开更多
基金financially supported by the National High Technology Research and Development Program of China(No.2012AA09A20105)the National Science Foundation Network(No.41574127)
文摘We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff botmdary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.
基金Supported by the National Natural Science Foundation of China(No.2011ZX05023--005--008)
文摘The generality to anisotropy of the earth media can be proved by a lot of research and observation, which is shown by the elastic parameters of the seismic wave changes with the direction of propagation. Actually, computational efficiency is very low, when simulating on the elastic anisotropie media, for the complicated and multi-parameters computation, which becomes a disadvantage to the succeeding migration and imaging pro-cedure. Using acoustic approximation in the VT[ media is an advisable simplification for the elastic wave simu-lation in that setting S-velocity into zero can greatly reduce the computational amount as well as get the same simulation effect. The authors get an acoustic approximation formula, then gain an anisotropic wave equation with 2-order in time and 4-order in space by inverse Fourier transformation, and dispel with the dispersion by adopting the high order finite difference operator in space and remove the edge reflection using the absorption attenuation boundary. Finally, the feasibility and effectiveness of this algorithm can be proved by the snaps and synthetic records.