期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An enhanced treatment of boundary conditions in implicit smoothed particle hydrodynamics 被引量:1
1
作者 Ya-Wei Han Hong-Fu Qiang +1 位作者 Hu Liu Wei-Ran Gao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期37-49,共13页
In this work, an enhanced treatment of the solid boundaries is proposed for smoothed particle hydrodynamics with implicit time integration scheme (Implicit SPH). Three types of virtual particles, i.e., boundary part... In this work, an enhanced treatment of the solid boundaries is proposed for smoothed particle hydrodynamics with implicit time integration scheme (Implicit SPH). Three types of virtual particles, i.e., boundary particles, image particles and mirror particles, are used to impose boundary conditions. Boundary particles are fixed on the solid boundary, and each boundary particle is associated with two fixed image particles inside the fluid domain and two fixed mirror particles outside the fluid domain. The image particles take the flow properties through fluid particles with moving least squares (MLS) interpolation and the properties of mirror particles can be obtained by the corresponding image particles. A repulsive force is also applied for boundary particles to prevent fluid particles from unphysical penetra- tion through solid boundaries. The new boundary treatment method has been validated with five numerical examples. All the numerical results show that Implicit SPH with this new boundary-treatment method can obtain accurate results for non-Newtonian fluids as well as Newtonian fluids, and this method is suitable for complex solid boundaries and can be easily extended to 3D problems. 展开更多
关键词 Implicit SPH. boundary conditions. Power-law model Repulsive force MLS interpolation
下载PDF
Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5th-CASAM-N): II. Paradigm Application to a Bernoulli Model Comprising Uncertain Parameters 被引量:1
2
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2022年第1期119-161,共43页
This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli ... This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis. 展开更多
关键词 Fifth-Order Sensitivity Analysis of Bernoulli model Uncertain model Parameters Uncertain model Domain Boundaries Uncertain model boundary conditions
下载PDF
Dynamic Control of Defective Gap Mode Through Defect Location
3
作者 苌磊 李应红 +3 位作者 吴云 张辉洁 王卫民 宋慧敏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第1期1-5,共5页
A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of... A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals. 展开更多
关键词 defective gap mode boundary condition dynamic control analytical model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部