Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal pr...Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste.展开更多
Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cu...Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cuyo nappe faulted zone on the south, the Wan'an-Natuna strike-slip tensional faulted zone on the west and the Mondoro-Panay strike-slip compressive faulted zone on the east. These faults take the top of the Nansha asthenosphere as their common detachmental surface. The Cenozoic dynamic process of the ultra-crust layer-block can be divided into four stages: K2-E21, during which the northern boundary faults extended, this ultra-crust layer-block was separated from the South China-Indosinian continental margin, the Palaeo-South China Sea subducted southwards and the Sibu accretion wedge was formed; E22-E31, during which the Southwest sub-sea basin extended and orogeny was active due to the collision of the Sibu accretion wedge; E32-N11, during which the central sub-sea basin extended, the Miri accretion wedge was formed and “A-type” subduction of the southern margin of the north Balawan occurred; N12-the present, during which large-scale thrusting and napping of the boundary faults in the south and mountain-building have taken place and the South China Sea stopped its extension.展开更多
First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mecha...First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mechanism of GTBs and their correlation with twin growth were fundamentally explored. Results suggested that GTBs can form from the gliding of CTBs, through their interaction with basal stacking fault. The gliding eventually restored the CTB structures by forming a pair of single-layer twinning disconnections. The pile-up of twinning disconnections should be responsible for the wide steps at twin boundaries as observed in high-resolution transmission electron microscopy, which can further promote twin growth. Possible effects of various alloying elements on pinning twin boundaries were also evaluated, to guide the strengthening design of Ti alloys.展开更多
A new shell finite element method (FEM) model with an equivalent boundary is presented for estimating the re- sponse of a buried pipeline under large fault movement. The length of affected pipeline under fault movemen...A new shell finite element method (FEM) model with an equivalent boundary is presented for estimating the re- sponse of a buried pipeline under large fault movement. The length of affected pipeline under fault movement is usually too long for a shell-mode calculation because of the limitation of memory and time of computers. In this study, only the pipeline segment near fault is modeled with plastic shell elements to study the local buckling and the large section deformation in pipe. The material property of pipe segment far away from the fault is considered as elastic, and nonlinear spring elements at equivalent boundaries are obtained and applied to two ends of shell model. Compared with the fixed-boundary shell model, the shell model with an equivalent boundary proposed by the study can remarkably reduce the needed memory and calculating time.展开更多
Based on the interpretation of two-dimensional seismic data, this paper analyzes the characteristics of three boundary fault systems including the Shajingzi fault, the Aqia fault and the Tumuxiuke fault around the Awa...Based on the interpretation of two-dimensional seismic data, this paper analyzes the characteristics of three boundary fault systems including the Shajingzi fault, the Aqia fault and the Tumuxiuke fault around the Awati sag of the Tarim Basin, and studies its controlling on hydrocarbon accumulation. Neotectonic movement is ubiquitous in oil and gas bearing basins in China, such as Neogene intense activities of large boundary thrusting faults of the Awati sag: Shajingzi fault, Aqia fault and Tumuxiuke fault. Based on a large number of seismic data, it is showed that they have section wise characteristics in the direction of fault strike, and active periods and associated structures formed of different sections are different. Usually, large anticlinal structures are formed in the upper wall, and faulted anticline controlled by companion faults are formed in the bottom wall. Large faults cut the strata from Cambrian up to Neogene. For the anticline in the upper wall, fault activities caused by neotectonic movement played a destructive role in hydrocarbon accumulation, thus the preservation condition is critical for reservoir formation. In this sense, attention should be paid to formations in the upper walls of Aqia fault and Tumuxiuke fault under the Cambrian salt bed, whose plastic deformation could help to heal faults. Companion faults in the bottom wall cut down to the Cambrian and up to the Triassic serving as the pathway for hydrocarbon migration, and associated structures in the bottom wall are noteworthy exploration targets.展开更多
On the basis of the recent geological surveys and the relevant studies of the Xianshuihe fault zone, this paper analyzes the seismogenic mechanism of some faults and characteristic morphology on the fault zone by the ...On the basis of the recent geological surveys and the relevant studies of the Xianshuihe fault zone, this paper analyzes the seismogenic mechanism of some faults and characteristic morphology on the fault zone by the boundary element method and discusses the fault segmentation and the related distribution of the earthquake ruptures. The main conclusions are: For the first order segmentation, the Xianshuihe fault zone can be divided into three major segments (the northwestern Luhuo-Qianning segment, the middle linking fracture region and the southeastern Kangding segment). Among them, the differences are not only in geometry and structure, but also in mechanical property and dynamics. Some of the characteristic morphologies on the Xianshuihe fault zone reflect the effects in cumulative deformation due to long-term fault movement, and reveal the fault segmentation in different orders. Such morphologies control, to some extent, the developments and the distributions of the earthquake ruptures on the fault zone.展开更多
The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since ...The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression, it is usually limited to a full-space medium. In this study, as a first step to extend this method to an arbitrary complex fault system in half-space, the boundary integral equations (BIEs) for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space. Effect of the geometry of the complex fault system are dealt with carefully. Final BIEs is composed of two parts: contribution from full-space, which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space, and that from free surface, which is studied in detail in this study.展开更多
I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)S...I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)SFs requires the accumulations of a large number of vacancies,which are difficult to achieve at low temperatures.In this study,molecular dynamics(MD)and molecular statics(MS)simulations based on empirical interatomic potentials were applied to investigate the deformation defect evolutions from the symmetric tilt grain boundaries(GBs)in Mg and Mg-Y alloys under external loading along<c>-axis.The results show the planar faults(PFs)on Pyramidal I planes first appear due to the nucleation and glide of(1/2 c+p)partial dislocations from GBs,where p=1/3(1010).These partial dislocations with pyramidal PFs interact with other defects,including pyramidal PFs themselves,GBs,and ppartial dislocations,generating a large amount of I_(1)SFs.Detailed analyses show the nucleation and growth of I_(1)SFs are achieved by atomic shuffle events and deformation defect reactions without the requirements of vacancy diffusion.Our simulations also suggest the Y clusters at GBs can reduce the critical stress for the formation of pyramidal PFs and I_(1)SFs,which provide a possible reason for the experimental observations that Y promotes the<c+a>dislocation activities.展开更多
The magnetic prospection is one of the most useful methods to determine buried geological structures such as shallow fracture zones. The investigation of vertical and horizontal gradient and total magnetic field varia...The magnetic prospection is one of the most useful methods to determine buried geological structures such as shallow fracture zones. The investigation of vertical and horizontal gradient and total magnetic field variations over geological structures, which have been used for many years, may reveal their locations, geometries and physical characteristics. In this study, a proposed iterative 3-D rectangular prismatic model inversion algorithm was modified to interpret vertical magnetic gradient data defining the boundaries and the physical parameters of the anomalous structure. Vertical magnetic gradient measurements were carried out at the Tuzla fault, an active fault system located along NE-SW direction in Izmir (Turkey). Boundary analysis studies were applied to data in order to obtain boundaries of the structures, afterwards the inversion process was carried out considering these geometries. As a result, location, direction and other physical and geometrical features of the fault are achieved.展开更多
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
文摘Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste.
文摘Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cuyo nappe faulted zone on the south, the Wan'an-Natuna strike-slip tensional faulted zone on the west and the Mondoro-Panay strike-slip compressive faulted zone on the east. These faults take the top of the Nansha asthenosphere as their common detachmental surface. The Cenozoic dynamic process of the ultra-crust layer-block can be divided into four stages: K2-E21, during which the northern boundary faults extended, this ultra-crust layer-block was separated from the South China-Indosinian continental margin, the Palaeo-South China Sea subducted southwards and the Sibu accretion wedge was formed; E22-E31, during which the Southwest sub-sea basin extended and orogeny was active due to the collision of the Sibu accretion wedge; E32-N11, during which the central sub-sea basin extended, the Miri accretion wedge was formed and “A-type” subduction of the southern margin of the north Balawan occurred; N12-the present, during which large-scale thrusting and napping of the boundary faults in the south and mountain-building have taken place and the South China Sea stopped its extension.
基金the financial support from the National MCF Energy R&D Program of China (2018YFE0306100)the National Natural Science Foundation of China (51971249)the State Key Laboratory for Powder Metallurgy,Central South University,Changsha,China
文摘First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mechanism of GTBs and their correlation with twin growth were fundamentally explored. Results suggested that GTBs can form from the gliding of CTBs, through their interaction with basal stacking fault. The gliding eventually restored the CTB structures by forming a pair of single-layer twinning disconnections. The pile-up of twinning disconnections should be responsible for the wide steps at twin boundaries as observed in high-resolution transmission electron microscopy, which can further promote twin growth. Possible effects of various alloying elements on pinning twin boundaries were also evaluated, to guide the strengthening design of Ti alloys.
基金National Natural Sciences Foundation of China (50078049)
文摘A new shell finite element method (FEM) model with an equivalent boundary is presented for estimating the re- sponse of a buried pipeline under large fault movement. The length of affected pipeline under fault movement is usually too long for a shell-mode calculation because of the limitation of memory and time of computers. In this study, only the pipeline segment near fault is modeled with plastic shell elements to study the local buckling and the large section deformation in pipe. The material property of pipe segment far away from the fault is considered as elastic, and nonlinear spring elements at equivalent boundaries are obtained and applied to two ends of shell model. Compared with the fixed-boundary shell model, the shell model with an equivalent boundary proposed by the study can remarkably reduce the needed memory and calculating time.
基金financially supported by China Geological Survey Project (12120115001801,1211302108022,DD20160169 and DD20190708)the National Natural Science Foundation of China (41072102).
文摘Based on the interpretation of two-dimensional seismic data, this paper analyzes the characteristics of three boundary fault systems including the Shajingzi fault, the Aqia fault and the Tumuxiuke fault around the Awati sag of the Tarim Basin, and studies its controlling on hydrocarbon accumulation. Neotectonic movement is ubiquitous in oil and gas bearing basins in China, such as Neogene intense activities of large boundary thrusting faults of the Awati sag: Shajingzi fault, Aqia fault and Tumuxiuke fault. Based on a large number of seismic data, it is showed that they have section wise characteristics in the direction of fault strike, and active periods and associated structures formed of different sections are different. Usually, large anticlinal structures are formed in the upper wall, and faulted anticline controlled by companion faults are formed in the bottom wall. Large faults cut the strata from Cambrian up to Neogene. For the anticline in the upper wall, fault activities caused by neotectonic movement played a destructive role in hydrocarbon accumulation, thus the preservation condition is critical for reservoir formation. In this sense, attention should be paid to formations in the upper walls of Aqia fault and Tumuxiuke fault under the Cambrian salt bed, whose plastic deformation could help to heal faults. Companion faults in the bottom wall cut down to the Cambrian and up to the Triassic serving as the pathway for hydrocarbon migration, and associated structures in the bottom wall are noteworthy exploration targets.
文摘On the basis of the recent geological surveys and the relevant studies of the Xianshuihe fault zone, this paper analyzes the seismogenic mechanism of some faults and characteristic morphology on the fault zone by the boundary element method and discusses the fault segmentation and the related distribution of the earthquake ruptures. The main conclusions are: For the first order segmentation, the Xianshuihe fault zone can be divided into three major segments (the northwestern Luhuo-Qianning segment, the middle linking fracture region and the southeastern Kangding segment). Among them, the differences are not only in geometry and structure, but also in mechanical property and dynamics. Some of the characteristic morphologies on the Xianshuihe fault zone reflect the effects in cumulative deformation due to long-term fault movement, and reveal the fault segmentation in different orders. Such morphologies control, to some extent, the developments and the distributions of the earthquake ruptures on the fault zone.
基金supported by the President Fund of GUCAS(No. O85101CM03)National Natural Science Foundation of China(Nos.90715019 and 40821062)partially by National Basic Research Program of China (No.2004CB418404)
文摘The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression, it is usually limited to a full-space medium. In this study, as a first step to extend this method to an arbitrary complex fault system in half-space, the boundary integral equations (BIEs) for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space. Effect of the geometry of the complex fault system are dealt with carefully. Final BIEs is composed of two parts: contribution from full-space, which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space, and that from free surface, which is studied in detail in this study.
基金supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Sciences and Engineering under Award DE-SC0008637 as part of the Center for PRedictive Integrated Structural Materials Science(PRISMS Center)at University of Michigan。
文摘I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)SFs requires the accumulations of a large number of vacancies,which are difficult to achieve at low temperatures.In this study,molecular dynamics(MD)and molecular statics(MS)simulations based on empirical interatomic potentials were applied to investigate the deformation defect evolutions from the symmetric tilt grain boundaries(GBs)in Mg and Mg-Y alloys under external loading along<c>-axis.The results show the planar faults(PFs)on Pyramidal I planes first appear due to the nucleation and glide of(1/2 c+p)partial dislocations from GBs,where p=1/3(1010).These partial dislocations with pyramidal PFs interact with other defects,including pyramidal PFs themselves,GBs,and ppartial dislocations,generating a large amount of I_(1)SFs.Detailed analyses show the nucleation and growth of I_(1)SFs are achieved by atomic shuffle events and deformation defect reactions without the requirements of vacancy diffusion.Our simulations also suggest the Y clusters at GBs can reduce the critical stress for the formation of pyramidal PFs and I_(1)SFs,which provide a possible reason for the experimental observations that Y promotes the<c+a>dislocation activities.
文摘The magnetic prospection is one of the most useful methods to determine buried geological structures such as shallow fracture zones. The investigation of vertical and horizontal gradient and total magnetic field variations over geological structures, which have been used for many years, may reveal their locations, geometries and physical characteristics. In this study, a proposed iterative 3-D rectangular prismatic model inversion algorithm was modified to interpret vertical magnetic gradient data defining the boundaries and the physical parameters of the anomalous structure. Vertical magnetic gradient measurements were carried out at the Tuzla fault, an active fault system located along NE-SW direction in Izmir (Turkey). Boundary analysis studies were applied to data in order to obtain boundaries of the structures, afterwards the inversion process was carried out considering these geometries. As a result, location, direction and other physical and geometrical features of the fault are achieved.