期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
NANOSIZE EFFECT IN GRAIN BOUNDARY MIGRATION OF COPPER 被引量:2
1
作者 L.Zhou X.Q.Wei +1 位作者 N.G.Zhou D.G.Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期11-15,共5页
Molecular dynamics simulations of high temperature annealing of copper bicrystals have been carried out. The bicrystals have planar grain boundaries, and the gain size varies in nano range. An EAM (embedded atom metho... Molecular dynamics simulations of high temperature annealing of copper bicrystals have been carried out. The bicrystals have planar grain boundaries, and the gain size varies in nano range. An EAM (embedded atom method) potential of FS type is used for calculating the interatomic forces. The results show that in nanocrystalline copper, GB migration driven by inter-GB reaction can take place. A critical grain size is identified, below which the inter-GB reaction becomes strong enough to trigger GB motion, which accelerates rapidly and leads to annihilation of the grain boundaries. The critical size is found to be 16 atomic radii. A "through intermediate grain mechanism" is identified for the nano-grain boundary motion observed, which is never reported for GB migrations of conventional polycrystalline metals. 展开更多
关键词 grain boundary migration nanocrystal COPPER
下载PDF
Microstructural evolution of pre-twinned Mg alloy with annealing temperature and underlying boundary migration mechanism
2
作者 Ye Jin Kim Jong Un Lee +1 位作者 Gyo Myeong Lee Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2953-2966,共14页
This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%pla... This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%plastic strain along the rolling direction(RD)to activate{10-12}twinning and is subsequently annealed at 200,250,300,350,and 400℃.Numerous{10-12}twins are formed throughout the compressed material,leading to the formation of a RD-oriented texture.At an annealing temperature of 200℃,no microstructural variations occur during annealing.As the annealing temperature increases from 250 to 400℃,the residual strain energy and remaining twin boundaries of the annealed material decrease owing to the promoted static recovery and the increased area fraction of twin-free grown grains.Consequently,an increase in the annealing temperature results in a gradual microstructural transition from a fully twinned grain structure to a completely twin-free grain structure.The microstructural evolution during annealing is predominantly governed by the movement of high-angle grain boundaries via a strain-induced boundary migration mechanism,and a few twin boundaries migrate above 350℃because of their lower boundary energy.The boundary migration behavior and resultant microstructural evolution are discussed in detail based on the variations in boundary mobility and driving force for boundary migration with annealing temperature. 展开更多
关键词 Rolled Mg alloy {10-12}twin Grain growth boundary migration Annealing
下载PDF
Transition from grain boundary migration to grain boundary sliding in magnesium bicrystals
3
作者 Zheyuan Xing Haidong Fan +1 位作者 Chuanlong Xu Guozheng Kang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期17-31,共15页
In polycrystalline magnesium(Mg)and Mg alloys,as the grain size decreases,the grain boundary(GB)mediated plasticity including GB sliding and GB migration becomes the dominant deformation mechanism.In this study,the mo... In polycrystalline magnesium(Mg)and Mg alloys,as the grain size decreases,the grain boundary(GB)mediated plasticity including GB sliding and GB migration becomes the dominant deformation mechanism.In this study,the motion of[1100]symmetric tilt GBs in Mg bicrystals is investigated using molecular dynamics(MD)simulations.The effects of GB misorientation angle and temperature are considered.At low/room temperatures and varied GB misorientation angles in the range ofθ≥58.36°,the GB migration occurs via the shear coupling with the invariant plane of{0001};At 35.80°<θ<58.36°,both the GB migration and GB sliding happen and the invariant plane changes from{0001}plane to[1122]plane;At 26.54°≤θ≤35.80°,the GB migrates with the invariant plane of[1122];Finally,atθ<26.54°,the GB sliding becomes the main deformation mechanism.At 700 K,the GB sliding occurs at the misorientation angles in the range ofθ<58.36θ;while the GB migration occurs at the misorientation angles ofθ≥58.36°.By comparing the energy barriers of GB migration and GB sliding,it yields that the deformation mode with a low energy barrier always happens,which leads to the transition of deformation modes and agrees well with the MD simulation results. 展开更多
关键词 Molecular dynamics simulations MAGNESIUM Grain boundary migration Grain boundary sliding TEMPERATURE
原文传递
Orientation dependence of mechanically induced grain boundary migration in nano-grained copper 被引量:1
4
作者 J.X.Hou X.Y.Li K.Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第9期30-34,共5页
Tensile tests were carried out on gradient nanograined copper samples to investigate the grain orientation dependence of mechanically induced grain boundary migration(GBM) process. The relationship between GBM and the... Tensile tests were carried out on gradient nanograined copper samples to investigate the grain orientation dependence of mechanically induced grain boundary migration(GBM) process. The relationship between GBM and the orientations of nanograins relative to loading direction was established by using electron backscatter diffraction. GBM is found to be more pronounced in the grains with higher Schmid factors where dislocations are easier to slip. As a result, the fraction of high angle grain boundaries decreases and that of low angle grain boundaries increases after GBM. 展开更多
关键词 Grain boundary migration Orientation dependence TEXTURE Nano-grain COPPER
原文传递
Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110] 被引量:1
5
作者 Xueyang Zhang Kun Wang +5 位作者 Jun Chen Wangyu Hu Wenjun Zhu Shifang Xiao Huiqiu Deng Mengqiu Cai 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期273-279,共7页
Many of our previous studies have discussed the shock response of symmetrical grain boundaries in iron bicrystals.In this paper, the molecular dynamics simulation of an iron bicrystal containing Σ3 [110] asymmetry ti... Many of our previous studies have discussed the shock response of symmetrical grain boundaries in iron bicrystals.In this paper, the molecular dynamics simulation of an iron bicrystal containing Σ3 [110] asymmetry tilt grain boundary(ATGB) under shock-loading is performed. We find that the shock response of asymmetric grain boundaries is quite different from that of symmetric grain boundaries. Especially, our simulation proves that shock can induce migration of asymmetric grain boundary in iron. We also find that the shape and local structure of grain boundary(GB) would not be changed during shock-induced migration of Σ3 [110] ATGB, while the phase transformation near the GB could affect migration of GB. The most important discovery is that the shock-induced shear stress difference between two sides of GB is the key factor leading to GB migration. Our simulation involves a variety of piston velocities, and the migration of GB seems to be less sensitive to the piston velocity. Finally, the kinetics of GB migration at lattice level is discussed. Our work firstly reports the simulation of shock-induced grain boundary migration in iron. It is of great significance to the theory of GB migration and material engineering. 展开更多
关键词 shock-loading grain boundary migration IRON phase transition
下载PDF
Suppression of grain boundary migration at cryogenic temperature in an extremely fine nanograined Ni-Mo alloy 被引量:1
6
作者 J.Hu J.X.Li Y.-N.Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期65-69,共5页
Microindentation creep tests on an electrodeposited extremely fine(4.9 nm) nanograined(ng) Ni-14.2 at.% Mo(Ni-14.2 Mo) at both room temperature(RT) and liquid nitrogen temperature(LNT) demonstrated that lowering tempe... Microindentation creep tests on an electrodeposited extremely fine(4.9 nm) nanograined(ng) Ni-14.2 at.% Mo(Ni-14.2 Mo) at both room temperature(RT) and liquid nitrogen temperature(LNT) demonstrated that lowering temperature retarded softening in the ng Ni-Mo alloy. The obtained strain rate sensitivity at LNT was one order of magnitude lower than that at RT. Microstructural characterization revealed that mechanically-driven grain boundary(GB) migration was greatly suppressed by lowering temperature,which might be ascribed to the presence of solute Mo atoms that significantly retarded coupled GB motion at LNT. Deformation was instead carried by shear bands. 展开更多
关键词 Extremely fine nanograined metals Mechanically-driven grain boundary migration Cryogenic temperature Shear bands Solute atoms
原文传递
A computational study of a capsule lateral migration in microchannel flow
7
作者 M.Navidbakhsh M.Rezazadeh 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期513-525,共13页
A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re = 0.01. The capsule is modeled as a liquid drop sur- rounded by a neo-Hookean elastic membrane. The numer- ical m... A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re = 0.01. The capsule is modeled as a liquid drop sur- rounded by a neo-Hookean elastic membrane. The numer- ical model combines immersed boundary with lattice Boltz- mann method (IB-LBM). The LBM is used to simulate fixed Cartesian grid while the IBM is utilized to implement the fluid-structure interaction by a set of Lagrangian moving grids for the membrane. The effect of shear elasticity and bending stiffness are both considered. The results show the significance of elastic modulus and initial lateral position on deformation and morphological properties of a circular cap- sule. The wall effect becomes stronger as the capsule ini- tial position gets closer to the channel wall. As the elastic modulus of membrane increases, the capsule undergoes less pronounced deformation and velocity in direction x is de- creased, thus, the capsule motion is slower than the back- ground flow. The best agreement between the present model and experiments for migration velocity takes place for the capsule with normal to moderate membrane elastic modulus. The results are in good agreement with experiment study of Coupier et al. and previous numerical studies. Therefore, the IB-LBM can be employed to make prediction in vitro and in vivo studies of capsule deformation. 展开更多
关键词 Capsule. Lateral migration. Lattice Boltzmann.Immersed boundary ~ Deformation ~ Initial position
下载PDF
Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation 被引量:12
8
作者 李东锋 张端正 +4 位作者 刘胜胆 单朝军 张新明 王琴 韩素琦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1491-1497,共7页
The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD... The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration. 展开更多
关键词 aluminum alloy Zener-Hollomon parameter dynamic recrystallization strain-induced boundary migration Al3Zr dispersoids
下载PDF
Formation mechanisms of recrystallization textures in aluminum sheets based on theories of oriented nucleation and oriented growth 被引量:1
9
作者 毛卫民 杨平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1635-1644,共10页
The recrystallization textures in 95%rolled aluminum sheets with different purities and initial textures were investigated.The effects of recovery levels and the dragging effects induced by impurities on the effective... The recrystallization textures in 95%rolled aluminum sheets with different purities and initial textures were investigated.The effects of recovery levels and the dragging effects induced by impurities on the effective driving force and corresponding behaviors of oriented nucleation and oriented growth during annealing were analyzed.The oriented nucleation is a common behavior in the initial stage of primary recrystallization if the effective driving force in deformed matrix is not too high to reduce the necessity of nucleation period.Oriented growth might appear if the temperature is not too high and the grains,of which the misorientation to matrix is about 40°〈111〉,have enough time and space to expand growth advantages,while certain reduction of effective driving force is also necessary.The recrystallization textures could be changed by controlling initial textures and effective driving forces which can be regulated by recovery levels and dragging effects. 展开更多
关键词 aluminum RECRYSTALLIZATION TEXTURE recovery stored energy boundary migration
下载PDF
Primary and secondary modes of deformation twinning in HCP Mg based on atomistic simulations 被引量:3
10
作者 徐泓鹭 苏小明 +1 位作者 袁广银 金朝晖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3804-3809,共6页
Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (M... Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (MD) simulations. The results show that the {1^-1^-21}-type twinning acts as the most preferential mode of twinning. Once such twins are formed, they are almost ready to grow. The TBM of such twins is led by pure atomic shuffling events. A secondary mode of twinning can also occur in our simulations. The {112^-2} twinning is observed at 10 K as the secondary twin. This secondary mode of twinning shows different energy barriers for nucleation as well as for growth compared with the {1^-1^-21}-type twining. In particular, TBMs in this case is triggered intrinsically by pyramidal slip at its twin boundary. 展开更多
关键词 MAGNESIUM atomistic simulation deformation twinning twin boundary migration dislocation-grain boundary interaction
下载PDF
Coordinated grain boundary deformation governed nanograin annihilation in shear cycling 被引量:3
11
作者 Yingbin Chen Qishan Huang +4 位作者 Qi Zhu Kexing Song Yanjun Zhou Haofei Zhou Jiangwei Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第27期180-191,共12页
Grain growth and shrinkage are essential to the thermal and mechanical stability of nanocrystalline metals,which are assumed to be governed by the coordinated deformation between neighboring grain boundaries(GBs)in th... Grain growth and shrinkage are essential to the thermal and mechanical stability of nanocrystalline metals,which are assumed to be governed by the coordinated deformation between neighboring grain boundaries(GBs)in the nanosized grains.However,the dynamics of such coordination has rarely been reported,especially in experiments.In this work,we systematically investigate the atomistic mechanism of coordinated GB deformation during grain shrinkage in an Au nanocrystal film through combined stateof-the-art in situ shear testing and atomistic simulations.We demonstrate that an embedded nanograin experiences shrinkage and eventually annihilation during a typical shear loading cycle.The continuous grain shrinkage is accommodated by the coordinated evolution of the surrounding GB network via dislocation-mediated migration,while the final grain annihilation proceeds through the sequential dislocation-annihilation-induced grain rotation and merging of opposite GBs.Both experiments and simulations show that stress distribution and GB structure play important roles in the coordinated deformation of different GBs and control the grain shrinkage/annihilation under shear loading.Our findings establish a mechanistic relation between coordinated GB deformation and grain shrinkage,which reveals a general deformation phenomenon in nanocrystalline metals and enriches our understanding on the atomistic origin of structural stability in nanocrystalline metals under mechanical loading. 展开更多
关键词 Nanocrystalline metals Grain shrinkage and annihilation Grain boundary migration Grain rotation Coordinated deformation
原文传递
Effects of twin orientation and twin boundary spacing on the plastic deformation behaviors in Ni nanowires 被引量:1
12
作者 Ying Zhang Yuxuan Hou +9 位作者 He Zheng Ligong Zhao Shuangfeng Jia Kaixuan Li Huayu Peng Peili Zhao Lei Li Weiwei Meng Renhui Jiang Jianbo Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第4期231-240,共10页
Spreading twins throughout nano metals has been proved to effectively mediate the mechanical behaviors in face-centered-cubic(fcc)metals.However,the experimental investigation concerning the roles of twin boundary(TB)... Spreading twins throughout nano metals has been proved to effectively mediate the mechanical behaviors in face-centered-cubic(fcc)metals.However,the experimental investigation concerning the roles of twin boundary(TB)during deformation is rarely reported.Here,with the joint efforts of in-situ nanomechani-cal testing and theoretical studies,we provide a systematic investigation regarding the effects of TB orien-tation(θ,the angle between tensile loading direction and the normal of TB)and spacing on deformation mechanisms in Ni nanowires(NWs).As compared with single-crystalline counterparts,it is found that nano-twinned(nt)NWs withθ∼0°exhibit limited ductility,whereas TB can serve as an effective block-age to the dislocation propagation.In contrast,in nt NWs withθ∼20°and 55°,TB migration/detwinning induced by TB-dislocation reaction or partial dislocation movement dominates the plasticity,which con-tributes to enhanced NW ductility.Regarding nt NWs withθ∼90°,dislocations are found to be able to transmit through the TBs,suggesting the limited effect of TB on the NW stretchability.Furthermore,de-creasing TB spacing(λ)can facilitate the detwinning process and thus greatly enhance the ductility of NW withθ∼55°.This study uncovers the distinct roles that TB can play during mechanical deforma-tions in fcc NWs and provides an atomistic view into the direct linkage between macroscopic mechanical properties and microscopic deformation modes. 展开更多
关键词 In-situ tension test Twin orientation Twin boundary migration DUCTILITY Nano-twinned Ni nanowires
原文传递
Dislocation-mediated migration of interphase boundaries 被引量:1
13
作者 Zhipeng Sun Fuzhi Dai +1 位作者 Ben Xu Wenzheng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2714-2726,共13页
Faceted interphase boundaries(IPBs)are commonly observed in lath-shaped precipitates in alloys consisting of simple face-centred cubic(fcc),body centred-cubic(bcc)or hexagonal closed packed(hcp)phases,which normally c... Faceted interphase boundaries(IPBs)are commonly observed in lath-shaped precipitates in alloys consisting of simple face-centred cubic(fcc),body centred-cubic(bcc)or hexagonal closed packed(hcp)phases,which normally contain one or two sets of parallel dislocations.The influence of these dislocations on interface migration and possible accompanying long-range strain field remain unclear.To elucidate this,we carried out atomistic simulations to investigate the dislocation-mediated migration processes of IPBs in a pure-iron system.Our results show that the migration of these IPBs is accompanied with the slip of interfacial dislocations,even in high-index slip planes,with two migration modes were observed:the first mode is the uniform migration mode that occurs only when all of the dislocations slip in a common slip plane.A shear-coupled interface migration was observed for this mode.The other interfaces propagate in the stick-slip migration mode that occurs when the dislocations glide on different slip planes,involving dislocation reaction or tangling.A quantitative relationship was established to link the atomic displacements with the dislocation structure,slip plane,and interface normal.The macroscopic shear deformation due to the effect of overall atomic displacement shows a good agreement with the results obtained based on the phenomenological theory of martensite crystallography.Our findings have general implications for the understanding of phase transformations and the surface relief effect at the atomic scale. 展开更多
关键词 Interphase boundary migration O-line interface Shear-coupled interface migration Dislocation gliding Atomic displacement
原文传递
Significant annealing-induced hardening effect in nanolaminate d-nanotwinne d(CrCoNi)_(97.4)Al_(0.8)Ti_(1.8)me dium-entropy alloy by severe cold rolling
14
作者 Shuqing Yuan Hui Fu +2 位作者 Lei Qian Chi Fai Cheung Xu-Sheng Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期156-166,共11页
Due to the easy coarsening caused by poor thermal stability,the verified annealing-induced hardening in nanograined metals can only maintain at a relatively low-temperature range.In this study,a nanolam-inated(CrCoNi)... Due to the easy coarsening caused by poor thermal stability,the verified annealing-induced hardening in nanograined metals can only maintain at a relatively low-temperature range.In this study,a nanolam-inated(CrCoNi)_(97.4)Al_(0.8)Ti_(1.8)medium-entropy alloy with an average lamellae thickness of∼20 nm embedded by thinner nanotwins was fabricated by severe cold rolling to achieve superior thermal stability.Compared with the conventional nanotwinned CrCoNi with nanotwins inside ultra-fined grains,the hier-archical nanolaminated-nanotwinned(CrCoNi)_(97.4)Al_(0.8)Ti_(1.8) exhibits a significant annealing-induced hard-ening effect,i.e.,hardness increasing from∼250 HV in the original specimen to∼500 HV in the cold-rolled status and finally∼630 HV after annealing at 600℃for 1 h.Detailed microstructure characterizations reveal that the reduced dislocation density and formation of L1_(2)ordered domain are mainly responsible for such hardening effect,which is facilitated by the effectively suppressed coarsening with annealing temperature,i.e.,slow detwinning process and well-retained low-angle nanolamellar structure.The coarsening mechanisms from the cold-rolled nanolamellae to the fully recrystallized micro-equiaxed structures under the annealing temperatures ranging from 400 to 800℃ were also elucidated by atomic observations. 展开更多
关键词 Annealing-induced hardening Thermal stability Nanolaminated-nanotwinned structure CrCoNi Detwinning Grain boundary migration
原文传递
Morphology and orientation evolution of Cu_(6)Sn_(5)grains on(001)Cu and(011)Cu single crystal substrates under temperature gradient 被引量:2
15
作者 Yuanyuan Qiao Xiaoying Liu +3 位作者 Ning Zhao Lawrence C M Wu Chunying Liu Haitao Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期29-39,共11页
The morphology and orientation evolution of Cu_(6)Sn_(5)grains formed on(001)Cu and(011)Cu single crystal substrates under temperature gradient(TG)were investigated.The initial orientated prism-type Cu_(6)Sn_(5)grains... The morphology and orientation evolution of Cu_(6)Sn_(5)grains formed on(001)Cu and(011)Cu single crystal substrates under temperature gradient(TG)were investigated.The initial orientated prism-type Cu_(6)Sn_(5)grains transformed to non-orientated scallop-type after isothermal reflow.However,the Cu_(6)Sn_(5)grains with strong texture were revealed on cold end single crystal Cu substrates by imposing TG.The Cu_(6)Sn_(5)grains on(001)Cu grew along their c-axis parallel to the substrate and finally merged into one grain to form a fully IMC joint,while those on(011)Cu presented a strong texture and merged into a few dominant Cu_(6)Sn_(5)grains showing about 30°angle with the substrate.The merging between neighboring Cu_(6)Sn_(5)grain pair was attributed to the rapid grain growth and grain boundary migration.Accordingly,a model was put forward to describe the merging process.The different morphology and orientation evolutions of the Cu_(6)Sn_(5)grains on single crystal and polycrystal Cu substrates were revealed based on crystallographic relationship and Cu flux.The method for controlling the morphology and orientation of Cu_(6)Sn_(5)grains is really benefitial to solve the reliability problems caused by anisotropy in 3 D packaging. 展开更多
关键词 3D packaging Single crystal Cu Temperature gradient ORIENTATION Disregistry Grain boundary migration
原文传递
A general mechanism of grain growth-Ⅰ.Theory 被引量:1
16
作者 Jianfeng Hu Xianhao Wang +3 位作者 Junzhan Zhang Jun Luo Zhijun Zhang Zhijian Shen 《Journal of Materiomics》 SCIE EI 2021年第5期1007-1013,共7页
The behaviors of grain growth dominate the formation of the microstructure inside polycrystalline materials and thus strongly influence their practical performances.However,grain growth behaviors still remain ambiguou... The behaviors of grain growth dominate the formation of the microstructure inside polycrystalline materials and thus strongly influence their practical performances.However,grain growth behaviors still remain ambiguous and thus lack a mathematical formula to describe the general evolution despite decades of efforts.Here,we propose a new migration model of grain boundary(GB)and further derive a mathematical expression to depict the general evolution of grain growth in the cellular structures.The expression incorporates the variables influencing growth rate(e.g.GB features,grain size and local grain size distribution)and thus reveals how the normal,abnormal and stagnant behaviors of grain growth occur in polycrystalline systems.In addition,our model correlates quantitatively GB roughening transition with grain growth behavior.The general growth theory may provide new insights into the GB thermodynamics and kinetics during the cellular structure evolution. 展开更多
关键词 Grain boundary migration Grain growth Roughening transition Abnormal grain growth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部