In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
In this paper, by using the fixed-point index theory, we study the existence of sign-changing solution of some three-point boundary value problems {y ''(t) + f(y) = 0, t ∈ [0, 1], y' (0) = 0, y(1) = αy(...In this paper, by using the fixed-point index theory, we study the existence of sign-changing solution of some three-point boundary value problems {y ''(t) + f(y) = 0, t ∈ [0, 1], y' (0) = 0, y(1) = αy(η), where 0 < α < 1, 0 < η < 1, f : R → R is continuous, strictly increasing and f(0) = 0.展开更多
An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, ...An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.展开更多
In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-...In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.展开更多
The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have o...The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]展开更多
In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivia...In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivial solution is studied. The'conditions on f which guarantee the existence of nontrivial solution are formulated. As an application, some examples to demonstrate the results are given.展开更多
In this paper,we study the existence of triple positive solutions for the nonlinear third-order three-point boundary value problem ■where η∈[0,1/2) is a constant,by using a fixed-point theorem due to Avery and Pete...In this paper,we study the existence of triple positive solutions for the nonlinear third-order three-point boundary value problem ■where η∈[0,1/2) is a constant,by using a fixed-point theorem due to Avery and Peterson,we establish results of triple positive solutions to the boundary value problem,and an example is given to illustrate the importance of result obtained.展开更多
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in...In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.展开更多
In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boun...In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boundary value problem has at least three positive solutions are obtained. An example illustrating our main result is given. Moreover, some previous results will be improved significantly in our paper.展开更多
In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) =...In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) = αuˊ(η), uˊˊ(0) = 0, where φp(s) = |s|p?2s with p 〉 1, 0 〈 α, η 〈 1 and 0 ≤ β 〈 1. Applying a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.展开更多
The existence of positive solutions is established for a nonlinear second-order three-point boundary value problem. The result improves and extends the main result in Electron J. Differential Equations, 34(1999), 1-8.
In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption ...In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.展开更多
By using the Krasnoselskii's fixed point theorem for cones,conditions for the existence of positive solutions to the three-point boundary value problem for second order differential equation with an advanced argum...By using the Krasnoselskii's fixed point theorem for cones,conditions for the existence of positive solutions to the three-point boundary value problem for second order differential equation with an advanced argumentu″(t)+λa(t)f(u(h(t)))=0, t∈(0,1), u(0)=0, αu(η)=u(1),where 0<η<1,0<α<1η and t≤h(t)≤1 are obtained.展开更多
This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- an...This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.展开更多
In this paper, the existence of monotone positive solution for the following secondorder three-point boundary value problem is studied:x″(t)+f(t,x(t))=0,0〈t〈1,x′(0)=0,x(1)+δx′(η)=0,where η ∈ (...In this paper, the existence of monotone positive solution for the following secondorder three-point boundary value problem is studied:x″(t)+f(t,x(t))=0,0〈t〈1,x′(0)=0,x(1)+δx′(η)=0,where η ∈ (0, 1), δ∈ [0, ∞), f ∈ C([0, 1] × [0, ∞), [0, ∞)). Under certain growth conditions on the nonlinear term f and by using a fixed point theorem of cone expansion and compression of functional type due to Avery, Anderson and Krueger, sufficient conditions for the existence of monotone positive solution are obtained and the bounds of solution are given. At last, an example is given to illustrate the result of the paper.展开更多
Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existenc...Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existence, uniqueness, and the dependency on parameters of the positive solutions under various assumptions. Our result improves those in the previous literatures.展开更多
In this paper, we investigate the existence of positive solutions for a singular third-order three-point boundary value problem with a parameter. By using fixed point index theory, some existence, multiplicity and non...In this paper, we investigate the existence of positive solutions for a singular third-order three-point boundary value problem with a parameter. By using fixed point index theory, some existence, multiplicity and nonexistence results for positive solutions are derived in terms of different values of λ.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Very recently, we have found that the method used in our recent paper (appeared in 2005) could be extended to obtain two general series-transformation formulas for formal power series defined over the complex number...Very recently, we have found that the method used in our recent paper (appeared in 2005) could be extended to obtain two general series-transformation formulas for formal power series defined over the complex number field. As usual, △, △k, D, and Dk denote, respectively, the difference and differential operators with △f(t) = f(t + 1) - f(t), Dr(t) = (d/dr)f (t) and △^0 = D0 = 1 (the identity operator). What we have obtained are the following two general transformation formulas (formal expansion formulas) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=0△^kf(0)φ^(k)(0)t^k/k! (1) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=01/k!f(0)φ^(k)(0)t^k/k! (2)展开更多
We study the existence of positive solutions of the three-point boundary value problem u"+g(t)f(u)=0,t∈(0,1),u′(0)=0,u(1)=αu(η), where η∈(0, 1), and α∈R with 0 〈α〈 1. The existence of posit...We study the existence of positive solutions of the three-point boundary value problem u"+g(t)f(u)=0,t∈(0,1),u′(0)=0,u(1)=αu(η), where η∈(0, 1), and α∈R with 0 〈α〈 1. The existence of positive solutions is studied by means of fixed point index theory under some conditions concerning the first eigenvalue with respect to the relevant linear operator. The results, here essentially extend and improve the main result in [1].展开更多
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
基金Supported by the Foundation of the Office of Science and Technology of Henan(122102310373)Supported by the NSF of Education Department of Henan Province(12B110025)
文摘In this paper, by using the fixed-point index theory, we study the existence of sign-changing solution of some three-point boundary value problems {y ''(t) + f(y) = 0, t ∈ [0, 1], y' (0) = 0, y(1) = αy(η), where 0 < α < 1, 0 < η < 1, f : R → R is continuous, strictly increasing and f(0) = 0.
文摘An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.
基金Supported by the National Nature Science Foundation of China(11071001)Supported by the Key Program of Ministry of Education of China(205068)
文摘In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.
文摘The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]
基金This work was supported by Key Academic Discipline of Zhejiang Province of China(2005)the Natural Science Foundation of Zhejiang Province of China(Y605144)the Education Department of Zhejiang Province of China(20051897).
文摘In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivial solution is studied. The'conditions on f which guarantee the existence of nontrivial solution are formulated. As an application, some examples to demonstrate the results are given.
基金The National Natural Science Foundation of China(11661071)
文摘In this paper,we study the existence of triple positive solutions for the nonlinear third-order three-point boundary value problem ■where η∈[0,1/2) is a constant,by using a fixed-point theorem due to Avery and Peterson,we establish results of triple positive solutions to the boundary value problem,and an example is given to illustrate the importance of result obtained.
基金Project supported by Foundation of Major Project of ScienceTechnology of Chinese Education Ministy,NSF of Education Committee of Jiangsu Province
文摘In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
文摘In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boundary value problem has at least three positive solutions are obtained. An example illustrating our main result is given. Moreover, some previous results will be improved significantly in our paper.
基金Supported by the HEBNSF of China(A2012506010)Supported by the YSF of Heibei Province(A2014506016)
文摘In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) = αuˊ(η), uˊˊ(0) = 0, where φp(s) = |s|p?2s with p 〉 1, 0 〈 α, η 〈 1 and 0 ≤ β 〈 1. Applying a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.
文摘The existence of positive solutions is established for a nonlinear second-order three-point boundary value problem. The result improves and extends the main result in Electron J. Differential Equations, 34(1999), 1-8.
基金Supported by the National Natural Science Foundation of China(11261053) Supported by the Natural Science Foundation of Gansu Province of China(1308RJZA125)
文摘In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.
基金Supported by the National Natural Sciences Foundation of China( 1 0 0 61 0 0 4 ) and the Natural SciencesFoundation of Yunnan Province
文摘By using the Krasnoselskii's fixed point theorem for cones,conditions for the existence of positive solutions to the three-point boundary value problem for second order differential equation with an advanced argumentu″(t)+λa(t)f(u(h(t)))=0, t∈(0,1), u(0)=0, αu(η)=u(1),where 0<η<1,0<α<1η and t≤h(t)≤1 are obtained.
基金supported by the National Natural Science Foundation of China (Grant No.10771212)the Natural Science Foundation of Jiangsu Province (Grant No.BK2008119)the Natural Science Foundation of the Education Division of Jiangsu Province (Grant No.08KJB110011)
文摘This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.
基金the Natural Science Foundation of Zhejiang Province of China (Y605144)the XNF of Zhejiang University of Media and Communications (XN08001)
文摘In this paper, the existence of monotone positive solution for the following secondorder three-point boundary value problem is studied:x″(t)+f(t,x(t))=0,0〈t〈1,x′(0)=0,x(1)+δx′(η)=0,where η ∈ (0, 1), δ∈ [0, ∞), f ∈ C([0, 1] × [0, ∞), [0, ∞)). Under certain growth conditions on the nonlinear term f and by using a fixed point theorem of cone expansion and compression of functional type due to Avery, Anderson and Krueger, sufficient conditions for the existence of monotone positive solution are obtained and the bounds of solution are given. At last, an example is given to illustrate the result of the paper.
文摘Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existence, uniqueness, and the dependency on parameters of the positive solutions under various assumptions. Our result improves those in the previous literatures.
文摘In this paper, we investigate the existence of positive solutions for a singular third-order three-point boundary value problem with a parameter. By using fixed point index theory, some existence, multiplicity and nonexistence results for positive solutions are derived in terms of different values of λ.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金the Natural Science Foundation of Gansu Province of China
文摘Very recently, we have found that the method used in our recent paper (appeared in 2005) could be extended to obtain two general series-transformation formulas for formal power series defined over the complex number field. As usual, △, △k, D, and Dk denote, respectively, the difference and differential operators with △f(t) = f(t + 1) - f(t), Dr(t) = (d/dr)f (t) and △^0 = D0 = 1 (the identity operator). What we have obtained are the following two general transformation formulas (formal expansion formulas) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=0△^kf(0)φ^(k)(0)t^k/k! (1) ∞∑k=0 f(k)φ^(k)(0)t^k/k!=∞∑k=01/k!f(0)φ^(k)(0)t^k/k! (2)
基金the Natural Science Foundation of Gansu Province(3ZS051-A25-016)NWNU-KJCXGCthe Spring-sun program(Z2004-1-62033).
文摘We study the existence of positive solutions of the three-point boundary value problem u"+g(t)f(u)=0,t∈(0,1),u′(0)=0,u(1)=αu(η), where η∈(0, 1), and α∈R with 0 〈α〈 1. The existence of positive solutions is studied by means of fixed point index theory under some conditions concerning the first eigenvalue with respect to the relevant linear operator. The results, here essentially extend and improve the main result in [1].