On bounded symmetric domain Ω of C^n, we investigate the properties of functions in weighted Bergman spaces A^P(Ω,dvs) for 0 〈 p ≤ +∞ and -1 〈 s 〈 4-∞. Based on the estimate of Bergman kernel, we obtain som...On bounded symmetric domain Ω of C^n, we investigate the properties of functions in weighted Bergman spaces A^P(Ω,dvs) for 0 〈 p ≤ +∞ and -1 〈 s 〈 4-∞. Based on the estimate of Bergman kernel, we obtain some characterizations of functions in A^P(Ω, dvs) in terms of a class of linear operators D^αB. Making use of these characterizations, we extend A^P(Ω,dvs) to the weighted Bergman spaces Aα^p,B(Ω,dvs) in a very natural way for 1 〈 p 〈 4-∞ and any real number s, that is, -∞ 〈 s 〈 +∞. This unified treatment covers some classical Bergman spaces, Besov spaces and Bloch spaces. Meanwhile, the boundedness of Bergman projection operators on Aα^P,β(Ω, dvs) and the dual of Aα^P,B(Ω, dvs) are given.展开更多
In this paper, we introduce the weighted Bloch spaces on the first type of classical bounded symmetric domains , and prove the equivalence of the norms and . Furthermore, we study the compactness of composition operat...In this paper, we introduce the weighted Bloch spaces on the first type of classical bounded symmetric domains , and prove the equivalence of the norms and . Furthermore, we study the compactness of composition operator from to , and obtain a sufficient and necessary condition for to be compact.展开更多
Polynomial approximation is studied on bounded symmetric domain Ω in C^n for holomorphic function spaces X such as Bloch-type spaces, Bergman-type spaces, Hardy spaces, Ω algebra and Lipschitz space. We extend the c...Polynomial approximation is studied on bounded symmetric domain Ω in C^n for holomorphic function spaces X such as Bloch-type spaces, Bergman-type spaces, Hardy spaces, Ω algebra and Lipschitz space. We extend the classical Jackson's theorem to several complex variables:Eκ(f,X)≤ω(1/k,f,X), where Eκ(f,X) is the deviation of the best approximation of f ∈X by polynomials of degree at most k with respect to the X-metric and ω(1/k,f,X) is the corresponding modulus of continuity.展开更多
The purpose of this paper is to study the composition operators on weightedBergman spaces of bounded symmetric domains.The sufficient and necessary conditions for a composition operator C"to be bounded add corn p...The purpose of this paper is to study the composition operators on weightedBergman spaces of bounded symmetric domains.The sufficient and necessary conditions for a composition operator C"to be bounded add corn pact respectively are given in term of the concept of Carleson measure.Meanwhile,the integral characteristic of n such that Cn is a Schatten p-class operator is obtained.展开更多
In this paper we first look upon some known results on the composition operator as bounded or compact on the Bloch-type space in polydisk and ball, and then give a sufficient and necessary condition for the compositio...In this paper we first look upon some known results on the composition operator as bounded or compact on the Bloch-type space in polydisk and ball, and then give a sufficient and necessary condition for the composition operator to be compact on the Bloch space in a bounded symmetric domain.展开更多
基金the NNSF of China(10571164)the SRFDP of Higher Education(20050358052)
文摘On bounded symmetric domain Ω of C^n, we investigate the properties of functions in weighted Bergman spaces A^P(Ω,dvs) for 0 〈 p ≤ +∞ and -1 〈 s 〈 4-∞. Based on the estimate of Bergman kernel, we obtain some characterizations of functions in A^P(Ω, dvs) in terms of a class of linear operators D^αB. Making use of these characterizations, we extend A^P(Ω,dvs) to the weighted Bergman spaces Aα^p,B(Ω,dvs) in a very natural way for 1 〈 p 〈 4-∞ and any real number s, that is, -∞ 〈 s 〈 +∞. This unified treatment covers some classical Bergman spaces, Besov spaces and Bloch spaces. Meanwhile, the boundedness of Bergman projection operators on Aα^P,β(Ω, dvs) and the dual of Aα^P,B(Ω, dvs) are given.
文摘In this paper, we introduce the weighted Bloch spaces on the first type of classical bounded symmetric domains , and prove the equivalence of the norms and . Furthermore, we study the compactness of composition operator from to , and obtain a sufficient and necessary condition for to be compact.
基金Partially supported by the NNSF of China(No.10471134)SRFDPNCET
文摘Polynomial approximation is studied on bounded symmetric domain Ω in C^n for holomorphic function spaces X such as Bloch-type spaces, Bergman-type spaces, Hardy spaces, Ω algebra and Lipschitz space. We extend the classical Jackson's theorem to several complex variables:Eκ(f,X)≤ω(1/k,f,X), where Eκ(f,X) is the deviation of the best approximation of f ∈X by polynomials of degree at most k with respect to the X-metric and ω(1/k,f,X) is the corresponding modulus of continuity.
文摘The purpose of this paper is to study the composition operators on weightedBergman spaces of bounded symmetric domains.The sufficient and necessary conditions for a composition operator C"to be bounded add corn pact respectively are given in term of the concept of Carleson measure.Meanwhile,the integral characteristic of n such that Cn is a Schatten p-class operator is obtained.
基金supported in part by the National Natural Science Foundation of China(Grand No.10371091)LiuHui Center for Applied Mathematics,Nankai University&Tianjin University.
文摘In this paper we first look upon some known results on the composition operator as bounded or compact on the Bloch-type space in polydisk and ball, and then give a sufficient and necessary condition for the composition operator to be compact on the Bloch space in a bounded symmetric domain.