Bovine tuberculosis(bTB)is a chronic zoonotic disease that is endemic in China.Current in-vitro tests for bTB are mainly based on blood assays.Collection of samples results in some stress to the sampled cattle and ass...Bovine tuberculosis(bTB)is a chronic zoonotic disease that is endemic in China.Current in-vitro tests for bTB are mainly based on blood assays.Collection of samples results in some stress to the sampled cattle and associated economic losses for the herd owner.This study was designed to investigate the relationship between milk and serum antibody tests for bTB in dairy cows using 85 cows with milk and corresponding blood samples.Totally 4,395 milk samples were used to assesse the apparent(test)prevalence and incidence of bTB using the milk antibody ELISA.The association between levels of bTB milk antibody and milk quality was also evaluated.Milk and serum antibody tests showed a good correlation with a 87.5%(95%CI:61.7%,98.4)positive agreement and 98.7%(95%CI:95.4,99.8)negative agreement.The animal level lactoprevalence ranged from 0.3%(95%CI:0,1.2)to 33.3%(95%CI:26.6,40.6)in different farms and the incidence rate ranged from 0 head/cow-month(95%CI:0,0.02)to 0.04 head/cow-month(95%CI:0.02,0.07).Twenty percent of sampled farms met the criteria for bTB control in China.The prevalence on large-scale farms was lower(p<0.001)than on small farms.The bTB milk antibody levels had a negative correlation with milk yield and a positive correlation with somatic cell count(SCC),milk protein percentage(MPP)and percentage of total solids(TS).According to this research,milk ELISA could be used as a supplement of blood samples to assist in the surveillance for bTB and for alerting control and eradication of bTB.展开更多
Reversed-phase high-performance liquid chromatography (RP-HPLC) method with C4 column and C18 column for analyzing β-lactoglobulin and α-lactalbumin in bovine milk was developed and the performance and characteris...Reversed-phase high-performance liquid chromatography (RP-HPLC) method with C4 column and C18 column for analyzing β-lactoglobulin and α-lactalbumin in bovine milk was developed and the performance and characteristic of two columns were compared. Shiseido Proteonavi C4 column (250 mm×4.6 mm×5μm) and Shiseido CAPCELL PAK SG 300 C18 column (250 mm× 4.6 mm×5 μm) were used in the experiment. Phase A was composed of 0.1% (V/V) trifluoroacetic acid (TFA) in ultrapure water and Phase B (organic phase) was composed of 0.1% TFA in acetonitrile. Gradient elution was taken. Flow rate was 1 mL min-1. The detection wavelength was 215 nm. The injection volume was 20 μL and the column temperature was 30℃. The results showed that linear relationship was good and recovery of α-lactalbumin and β-lactoglobulin was 86.12%-104.38%, C18 column had stronger ability to resist acid and more stable, and the method with C4 column had excellent sensitivities and good separation.展开更多
Milk allergy is one of the most common food allergies,affecting 6%of young children,andβ-lactoglobulin(β-LG)is the main milk allergen.Clostridium tyrobutyricum Z816 was selected for the degradation ofβ-LG,which was...Milk allergy is one of the most common food allergies,affecting 6%of young children,andβ-lactoglobulin(β-LG)is the main milk allergen.Clostridium tyrobutyricum Z816 was selected for the degradation ofβ-LG,which was successfully reduced by about 90%using permeabilized bacteria under the optimized conditions.The hydrolyzed peptides were identified by liquid chromatography-tandem mass spectrometry(LC-MS/MS)and analyzed by molecular modeling,which indicated that C.tyrobutyricum Z816 could effectively degrade the antigenic epitopes ofβ-LG.Finally,the concentration and digestibility ofβ-LG in actual samples was quantified using enzyme-linked immunosorbent assay(ELISA)and gastrointestinal digestion simulation experiments.The results showed more than 92%ofβ-LG in actual samples was hydrolyzed,and the gastric and total digestibility of whey protein isolate(WPI)was improved by 85.96%and 64.51%,respectively.Therefore,C.tyrobutyricum Z816 offers an effective method to degradeβ-LG and reduce the occurrence of milk allergies,which has great significance for the development of hypoallergenic dairy products.展开更多
Background:The biosynthesis of milk fat affects both the technological properties and organoleptic quality of milk and dairy products.MicroRNAs(miRNAs)are endogenous small non-coding RNAs that inhibit the expression o...Background:The biosynthesis of milk fat affects both the technological properties and organoleptic quality of milk and dairy products.MicroRNAs(miRNAs)are endogenous small non-coding RNAs that inhibit the expression of their mRNA targets and are involved in downstream signaling pathways that control several biological processes,including milk fat synthesis.miR-34b is a member of the miR-34 miRNA cluster,which is differentially expressed in the mammary gland tissue of dairy cows during lactation and dry periods.Previous studies have indicated miR-34b is a potential candidate gene that plays a decisive role in regulating milk fat synthesis;therefore,it is important to focus on miR-34b and investigate its regulatory effect on the biosynthesis of milk fat in bovine mammary epithelial cells(BMECs).Results:In this study,elevated miR-34b levels reduced milk fat synthesis,upregulated 1,999 genes,and downregulated 2,009 genes in BMECs.Moreover,Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis of differentially expressed genes suggested that miR-34b may play an inhibitory role in milk fat synthesis via the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)signaling pathway by reducing phosphorylation levels.Notably,the mTOR activator MHY1485 rescued the inhibitory effect of miR-34b.Furthermore,we demonstrated that retinoic acid-induced protein 14(RAI14)is a target of miR-34b via TargetScan and immunofluorescence assays.RAI14 mRNA and protein levels were significantly decreased by the miR-34b mimic and increased by the miR-34b inhibitor.Moreover,the reduction in RAI14 levels led to the inhibition of the Akt/mTOR signaling pathway.Conclusions:Overall,our results identified a miR-34b-RAI14-Akt/mTOR regulatory network,while also providing a theoretical basis for the molecular breeding of dairy cows.展开更多
Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in ...Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in association with physiological and conformational changes of the complexes remain unclear.In this study,polyphenols from eight botanical sources were extracted to prepare non-covalent complexes withβ-lactoglobulin(β-LG),a major allergen in milk.The dominant phenolic compounds bound toβ-LG with a diminished allergenicity were identified to investigate their respective role on the structural and allergenic properties ofβ-LG.Extracts from Vaccinium fruits and black soybeans were found to have great inhibitory effects on the IgE-and IgG-binding abilities ofβ-LG.Among the fourteen structure-related phenolic compounds,flavonoids and tannins with larger MWs and multi-hydroxyl substituents,notably rutin,EGCG,and ellagitannins were more potent to elicit changes on the conformational structures ofβ-LG to decrease the allergenicity of complexedβ-LG.Correlation analysis further demonstrated that a destabilized secondary structure and protein depolymerization caused by polyphenol-binding were closely related to the allergenicity property of formed complexes.This study provides insights into the understanding of structure-allergenicity relationship ofβ-LG-polyphenol interactions and would benefit the development of polyphenol-fortified matrices with hypoallergenic potential.展开更多
One hundred strains isolated from bovine raw milk, obtained from different farms, were subjected to different in vitro stress typical of gastrointestinal tract. Twelve strains were able to tolerate pepsin at pH 2, pan...One hundred strains isolated from bovine raw milk, obtained from different farms, were subjected to different in vitro stress typical of gastrointestinal tract. Twelve strains were able to tolerate pepsin at pH 2, pancreatin and bile salts (0.3%). These bacteria were identified using 16S rRNA gene sequencing. Eight isolates were Lactobacillus plantarum and four were Lactobacillus fermentum. They were not able to degrade mucin and they were γ-haemolytic. All strains had antibacterial activity against Staphylococcus aureus, Listeria monocytogenes and Salmonella thyphimirium. However, only six strains inhibited Escherchia coli. All these showed ability for autoaggregation and/or hydrophobicity properties. They were also characterized in respect to their technological properties. Important acidification and low proteolytic and lipolytic capacities were detected for all strains. In addition, they were able to produce exopolysaccharides and grow at hot and cold temperatures. These bacteria may be used further for manufacturing of functional foods and confirming their suitability as probiotic starter cultures.展开更多
This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used...This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used to investigate the effect of the pH (5.8-6.4), storage time (0-10 days) and storage temperature (5-10 ℃), on the responses, namely, mesophiles, psychrotrophs, lipolytic psychrotrophs and proteolytic psychrotrophs counts. Results showed that increase in pH and storage time had significant effect on the microbial count. No significant effect of storage temperature was observed for all the microorganisms studied. All responses were well predicted by selected mathematical models, as denoted by coefficient of determination above 0.95.展开更多
Background: Bovine milk contains not only a variety of nutritional ingredients but also microRNAs (miRNAs) that are thought to be secreted by the bovine mammary epithelial cells (BMECs). The objective of this stu...Background: Bovine milk contains not only a variety of nutritional ingredients but also microRNAs (miRNAs) that are thought to be secreted by the bovine mammary epithelial cells (BMECs). The objective of this study was to elucidate the production of milk-related miRNAs in BMECs under the influence of lactogenic hormones. Results: According to a microarray result of milk exosomal miRNAs prior to cellular analyses, a total of 257 miRNAs were detected in a Holstein cow milk. Of these, 18 major miRNAs of interest in the milk were selected for an expression analysis in BMEC culture that was treated with or without dexamethasone, insulin, and prolactin (DIP) to induce a lactogenic differentiation. Quantitative polymerase chain reaction (qPCR) results showed that the expressions of miR-21-Sp (P = 0.005), miR-26a (P = 0.016), and miR-320a (P = 0.011) were lower in the DIP-treated cells than in the untreated cells. In contrast, the expression of miR-339a (P-- 0.017) in the cell culture medium were lower in the DiP-treated culture than in the untreated culture. Intriguingly, the miR-148a expression in cell culture medium was elevated by DIP treatment of BMEC culture (P = 0.018). The medium-to-cell expression ratios of miR- 103 (P = 0.025), miR-148a (P 〈 0.001), and miR-223 (P = 0.013) were elevated in the DIP-treated BMECs, suggesting that the lactogenic differentiation-induced secretion of these three miRNAs in BMECs. A bioinformatic analysis showed that the miRNAs down-regulated in the BMECs were associated with the suppression of genes related to transcriptional regulation, protein phosphorylation, and tube development. Conclusion: The results suggest that the miRNAs changed by lactogenic hormones are associated with milk protein synthesis, and mammary gland development and maturation. The elevated miR-148a level in DIP-treated BMECs may be associated with its increase in milk during the lactation period of cows.展开更多
Due to the lack of effective assessment method,overheated milk commodities are often marketed as pasteurized milk on the market,which was sold in high price by fraud.Thus,this article aims to establish an approach bas...Due to the lack of effective assessment method,overheated milk commodities are often marketed as pasteurized milk on the market,which was sold in high price by fraud.Thus,this article aims to establish an approach based on metabolomics to monitor thermal processing temperature of bovine milk.Metabolomics data of bovine milk samples heated at temperatures ranging from 60℃to 150℃were achieved by ultra-performance liquid chromatography-high-resolution mass spectrometry(UPLC-HRMS)platform,followed by multivariate data analysis.A regular variation pattern of chemical composition as temperature rises was pictured,furthermore.N^(∈)carboxymethyl lysine(CML),N^(∈)-carboxyethyl lysine(CEL),pentosidine.pvrraline and lysinoalanine(LAL)were identified as 5 of the most contributed compounds to discriminate pasteurized and ultra-high-temperature(UHT)milk.By the comprehensive study on their content changes,we concluded that the optimal temperature range was 90-100℃for the generation of CML and CEL in this experiment,moreover.110~120℃for LAL.S0~100℃for pentosidine and 130-140℃for pvrraline.Finally,a predicted rule to discriminate pasteurized and UHT milk was preliminarily established based on the ratios of CML/CEL.CEL/pentosidine and CML/pentosidine.which could be applied in food labelling authentication of commercial bovine milk after further validation.展开更多
Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk p...Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk proteins were first separated by SDS polyacrylamide gel electrophoresis.After in gels digestion and extraction,phosphorylated peptides were enriched by titanium dioxide and identified by ultra performance liquid chromatography coupled with nano electrospray ionization tandem mass spectrometry.This method ensured the identification of 20 phosphorylated peptides,including 7 phosphorylated forms of α_s1-casein,8 α_s2-casein,and 5 β-casein.Eight phosphorylated sites derived from 3 α_s1-caseins,3 α_s2-caseins,and 2 β-caseins were also identified,and localized on residues Ser^61,Ser^63 and Ser^130 in α_s1-casein;Thr^145,Ser^146 and Ser^158 in α_s2-casein;and Ser^50 and Thr^56 in β-casein.These findings provide valuable information for investigating casein phosphorylation of the bovine milk.展开更多
Due to the functional importance of bovine milk protein polymorphisms, their correct discrimination is of great interest both from a scientific and practical point of view. Nowadays a large number of commercial platfo...Due to the functional importance of bovine milk protein polymorphisms, their correct discrimination is of great interest both from a scientific and practical point of view. Nowadays a large number of commercial platforms are available for semiautomated or fully automated SNP geno-typing. However, in some cases the use of simple and rather cheap methods is an effective tool to be implemented within one’s own laboratory for the routine analysis of a specific SNP. The present paper describes two simple tests based on the bidirectional allele-specific polymerase chain reaction (BAS-PCR) developed for the identification of β-casein (CSN2) B and I genetic variants. The practical application of the two methods on a panel of 84 Italian Brown bulls and 100 Italian Friesian cows is also discussed, including the biological significance of the two genetic variants and the importance of taking their occurrence into account when linkage analyses are performed on milk functional properties. A combined system for analysing milk protein variants by isoelectrofocusing (IEF) and the BAS-PCR assay developed for CSN2*I is described.展开更多
In this study,a label-free,portable and reproducible immunochip based on quartz crystal microbalance(QCM)was developed for the qualitative detection ofβ-lactoglobulin(β-LG),an allergen,in milk products.Experimental ...In this study,a label-free,portable and reproducible immunochip based on quartz crystal microbalance(QCM)was developed for the qualitative detection ofβ-lactoglobulin(β-LG),an allergen,in milk products.Experimental parameters in the fabrication and regeneration procedure such as pH of the coupling microenvironment,amount of anti-β-LG antibody and regeneration reagent were optimized in detail.Under optimal conditions,the proposed QCM immunochip exhibited good recognition of β-LG,with a calibration curve of ΔF=12.877 C_(β-LG)^(0.4809)(R^(2)=0.9982)and limit of detection of 0.04μg/mL.Additionally,this portable QCM immunochip had good stability,high specificity,and no obvious cross-reaction to three other milk proteins(α-casein,α-lactalbumin,and lactoferrin).It could compete a qualitative measurement within5 min,and could be reused at least ten times.In the β-LG analysis of actual milk samples,the developed QCM immunochip yielded reliable and accurate results,which correlated strongly with those from the standard HPLC method(R^(2)=0.9969).Thus,the portable,stable,and reproducible QCM immunochip developed in this study allowed the rapid,cost-effectively and sensitively measure theβ-LG in milk products.展开更多
Glucose plays a vital part in milk protein synthesis through the mTOR signaling pathway in bovine mammary epithelial cells(BMEC).The objectives of this study were to determine how glucose affects hexokinase(HK)activit...Glucose plays a vital part in milk protein synthesis through the mTOR signaling pathway in bovine mammary epithelial cells(BMEC).The objectives of this study were to determine how glucose affects hexokinase(HK)activity in BMEC and investigate the regulatory effect of HK in kappa casein(CSN3)synthesis via the mechanistic target of rapamycin complex 1(mTORC1)signaling pathway in BMEC.For this,HK1 and HK2 were knocked out in BMEC using the CRISPR/Cas9 system.The gene and protein expression,glucose uptake,and cell proliferation were measured.We found that glucose uptake,cell proliferation,CSN3 gene expression levels,and expression of HK1 and HK2 increased with increasing glucose concentrations.Notably,glucose uptake was significantly reduced in HK2 knockout(HK2KO)BMEC treated with 17.5 mM glucose.Moreover,under the same glucose treatment conditions,the proliferative ability and abundance of CSN3 were significantly diminished in both HK1 knockout(HK1KO)and HK2KO BMEC compared with that in wild-type BEMC.We further observed that the phosphorylation levels of ribosome protein subunit 6 kinase 1(S6K1)were reduced in HK1KO and HK2KO BMEC following treatment with 17.5 mM glucose.As expected,the levels of glucose-6-phosphate and the m RNA expression levels of glycolysis-related genes were decreased in both HK1KO and HK2KO BMEC following glucose treatment.These results indicated that the knockout of HK1 and HK2 inhibited cell proliferation and CSN3 expression in BMEC under glucose treatment,which may be associated with the inactivation of the S6K1 and inhibition of glycolysis.展开更多
Helicobacter pylori (H. pylori) eradication is considered a necessary step in the management of peptic ulcer disease, chronic gastritis, gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. Standard ...Helicobacter pylori (H. pylori) eradication is considered a necessary step in the management of peptic ulcer disease, chronic gastritis, gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. Standard triple therapy eradication regimens are inconvenient and achieve unpredictable and often poor results. Eradication rates are decreasing over time with increase in antibiotic resistance. Fermented milk and several of its component whey proteins have emerged as candidates for complementary therapy. In this context the current review seeks to summarize the current evidence available on their role in H. pylori eradication. Pertinent narrative/systematic reviews, clinical trials and laboratory studies on individual components including fermented milk, yogurt, whey proteins, lactoferrin, α-lactalbumin (α-LA), glycomacropeptide and immunoglobulin were comprehensively searched and retrieved from Medline, Embase, Scopus, Cochrane Controlled Trials Register and abstracts/proceedings of conferences up to May 2013. A preponderance of the evidence available on fermented milk-based probiotic preparations and bovine lactoferrin suggests a beneficial effect in Helicobacter eradication. Evidence for α-LA and immunoglobulins is promising while that for glycomacropeptide is preliminary and requires substantiation. The magnitude of the potential benefit documented so far is small and the precise clinical settings are ill defined. This restricts the potential use of this group as a complementary therapy in a nutraceutical setting hinging on better patient acceptability/compliance. Further work is necessary to identify the optimal substrate, fermentation process, dose and the ideal clinical setting (prevention/treatment, first line therapy/recurrence, symptomatic/asymptomatic, gastritis/ulcer diseases etc.). The potential of this group in high antibiotic resistance or treatment failure settings presents interesting possibilities and deserves further exploration.展开更多
Objective To investigate the 23 bp and 12 bp insertion/deletion(indel)mutations within the bovine prion protein(PRNP)gene in Chinese dairy cows,and to detect the associations of two indel mutations with BSE susceptibi...Objective To investigate the 23 bp and 12 bp insertion/deletion(indel)mutations within the bovine prion protein(PRNP)gene in Chinese dairy cows,and to detect the associations of two indel mutations with BSE susceptibility and milk performance.Methods Based on bovine PRNP gene sequence,two pairs of primers for testing the 23 bp and 12 bp indel mutations were designed.The PCR amplification and agarose electrophoresis were carried out to distinguish the different genotypes within the mutations.Moreover,based on previous data from other cattle breeds and present genotypic and allelic frequencies of two indels mutations in this study,the corrections between the two indel mutations and BSE susceptibility were tested,as well as the relationships between the mutations and milk performance traits were analyzed in this study based on the statistical analyses.Results In the analyzed Chinese Holstein population,the frequencies of two"del"alleles in 23 bp and 12 bp indel muations were more frequent.The frequency of haplotype of 23del-12del was higher than those of 23del-12ins and 23ins-12del.From the estimated r2and D’values,two indel polymorphisms were linked strongly in the Holstein population(D’=57.5%,r2=0.257).Compared with the BSE-affected cattle populations from the reported data,the significant differences of genotypic and allelic frequencies were found among present Holstein and some BSE-affected populations(P<0.05 or P<0.01).Similarly,there were significant frequency distribution differences of genotypes and alleles among Chinese Holstein and several previous reported healthy dairy cattle(P<0.05 or P<0.01).Moreover,association of genotype and combined genotypes of two indel polymorphisms with milk performance and resistant mastitis traits were analyzed in Holstein population,but no significant differences were found(P>0.05).Conclusions These observations revealed that the influence of two indel mutations within the bovine PRNP gene on BSE depended on the breed and they did not affect the milk production traits,which layed the foundation for future selection of resistant animals,and for improving health conditions for dairy breeding against BSE in China.展开更多
基金the Natural Science Foundation of China(U21A20259)National Key Research and Development Program of Ningxia Hui Autonomous Region(2021BEF02028)+1 种基金the Natural Science Foundation of Hubei Province(2021CFA016)China Agriculture Research System of MOF and MARA and Basic and technical innovation team for prevention and control of bovine disease.
文摘Bovine tuberculosis(bTB)is a chronic zoonotic disease that is endemic in China.Current in-vitro tests for bTB are mainly based on blood assays.Collection of samples results in some stress to the sampled cattle and associated economic losses for the herd owner.This study was designed to investigate the relationship between milk and serum antibody tests for bTB in dairy cows using 85 cows with milk and corresponding blood samples.Totally 4,395 milk samples were used to assesse the apparent(test)prevalence and incidence of bTB using the milk antibody ELISA.The association between levels of bTB milk antibody and milk quality was also evaluated.Milk and serum antibody tests showed a good correlation with a 87.5%(95%CI:61.7%,98.4)positive agreement and 98.7%(95%CI:95.4,99.8)negative agreement.The animal level lactoprevalence ranged from 0.3%(95%CI:0,1.2)to 33.3%(95%CI:26.6,40.6)in different farms and the incidence rate ranged from 0 head/cow-month(95%CI:0,0.02)to 0.04 head/cow-month(95%CI:0.02,0.07).Twenty percent of sampled farms met the criteria for bTB control in China.The prevalence on large-scale farms was lower(p<0.001)than on small farms.The bTB milk antibody levels had a negative correlation with milk yield and a positive correlation with somatic cell count(SCC),milk protein percentage(MPP)and percentage of total solids(TS).According to this research,milk ELISA could be used as a supplement of blood samples to assist in the surveillance for bTB and for alerting control and eradication of bTB.
基金Supported by the Project of Science & Technology Plans in Heilongjiang Province in the 11th Five-year Period (GB07B407)
文摘Reversed-phase high-performance liquid chromatography (RP-HPLC) method with C4 column and C18 column for analyzing β-lactoglobulin and α-lactalbumin in bovine milk was developed and the performance and characteristic of two columns were compared. Shiseido Proteonavi C4 column (250 mm×4.6 mm×5μm) and Shiseido CAPCELL PAK SG 300 C18 column (250 mm× 4.6 mm×5 μm) were used in the experiment. Phase A was composed of 0.1% (V/V) trifluoroacetic acid (TFA) in ultrapure water and Phase B (organic phase) was composed of 0.1% TFA in acetonitrile. Gradient elution was taken. Flow rate was 1 mL min-1. The detection wavelength was 215 nm. The injection volume was 20 μL and the column temperature was 30℃. The results showed that linear relationship was good and recovery of α-lactalbumin and β-lactoglobulin was 86.12%-104.38%, C18 column had stronger ability to resist acid and more stable, and the method with C4 column had excellent sensitivities and good separation.
基金supported by the National Key R&D Program of China(2017YFC1600404)the National Natural Science Foundation of China(31922070,22008114)the Natural Science Foundation of Jiangsu Province(BK20180038,BK20200684)。
文摘Milk allergy is one of the most common food allergies,affecting 6%of young children,andβ-lactoglobulin(β-LG)is the main milk allergen.Clostridium tyrobutyricum Z816 was selected for the degradation ofβ-LG,which was successfully reduced by about 90%using permeabilized bacteria under the optimized conditions.The hydrolyzed peptides were identified by liquid chromatography-tandem mass spectrometry(LC-MS/MS)and analyzed by molecular modeling,which indicated that C.tyrobutyricum Z816 could effectively degrade the antigenic epitopes ofβ-LG.Finally,the concentration and digestibility ofβ-LG in actual samples was quantified using enzyme-linked immunosorbent assay(ELISA)and gastrointestinal digestion simulation experiments.The results showed more than 92%ofβ-LG in actual samples was hydrolyzed,and the gastric and total digestibility of whey protein isolate(WPI)was improved by 85.96%and 64.51%,respectively.Therefore,C.tyrobutyricum Z816 offers an effective method to degradeβ-LG and reduce the occurrence of milk allergies,which has great significance for the development of hypoallergenic dairy products.
基金supported by the Natural Science Foundation of Shaanxi Province(2021JM-100)the Shaanxi Key Research and Development Program(2018ZDXM-NY-046).
文摘Background:The biosynthesis of milk fat affects both the technological properties and organoleptic quality of milk and dairy products.MicroRNAs(miRNAs)are endogenous small non-coding RNAs that inhibit the expression of their mRNA targets and are involved in downstream signaling pathways that control several biological processes,including milk fat synthesis.miR-34b is a member of the miR-34 miRNA cluster,which is differentially expressed in the mammary gland tissue of dairy cows during lactation and dry periods.Previous studies have indicated miR-34b is a potential candidate gene that plays a decisive role in regulating milk fat synthesis;therefore,it is important to focus on miR-34b and investigate its regulatory effect on the biosynthesis of milk fat in bovine mammary epithelial cells(BMECs).Results:In this study,elevated miR-34b levels reduced milk fat synthesis,upregulated 1,999 genes,and downregulated 2,009 genes in BMECs.Moreover,Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis of differentially expressed genes suggested that miR-34b may play an inhibitory role in milk fat synthesis via the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)signaling pathway by reducing phosphorylation levels.Notably,the mTOR activator MHY1485 rescued the inhibitory effect of miR-34b.Furthermore,we demonstrated that retinoic acid-induced protein 14(RAI14)is a target of miR-34b via TargetScan and immunofluorescence assays.RAI14 mRNA and protein levels were significantly decreased by the miR-34b mimic and increased by the miR-34b inhibitor.Moreover,the reduction in RAI14 levels led to the inhibition of the Akt/mTOR signaling pathway.Conclusions:Overall,our results identified a miR-34b-RAI14-Akt/mTOR regulatory network,while also providing a theoretical basis for the molecular breeding of dairy cows.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LGN22C200027 and LZ23C200001).
文摘Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in association with physiological and conformational changes of the complexes remain unclear.In this study,polyphenols from eight botanical sources were extracted to prepare non-covalent complexes withβ-lactoglobulin(β-LG),a major allergen in milk.The dominant phenolic compounds bound toβ-LG with a diminished allergenicity were identified to investigate their respective role on the structural and allergenic properties ofβ-LG.Extracts from Vaccinium fruits and black soybeans were found to have great inhibitory effects on the IgE-and IgG-binding abilities ofβ-LG.Among the fourteen structure-related phenolic compounds,flavonoids and tannins with larger MWs and multi-hydroxyl substituents,notably rutin,EGCG,and ellagitannins were more potent to elicit changes on the conformational structures ofβ-LG to decrease the allergenicity of complexedβ-LG.Correlation analysis further demonstrated that a destabilized secondary structure and protein depolymerization caused by polyphenol-binding were closely related to the allergenicity property of formed complexes.This study provides insights into the understanding of structure-allergenicity relationship ofβ-LG-polyphenol interactions and would benefit the development of polyphenol-fortified matrices with hypoallergenic potential.
文摘One hundred strains isolated from bovine raw milk, obtained from different farms, were subjected to different in vitro stress typical of gastrointestinal tract. Twelve strains were able to tolerate pepsin at pH 2, pancreatin and bile salts (0.3%). These bacteria were identified using 16S rRNA gene sequencing. Eight isolates were Lactobacillus plantarum and four were Lactobacillus fermentum. They were not able to degrade mucin and they were γ-haemolytic. All strains had antibacterial activity against Staphylococcus aureus, Listeria monocytogenes and Salmonella thyphimirium. However, only six strains inhibited Escherchia coli. All these showed ability for autoaggregation and/or hydrophobicity properties. They were also characterized in respect to their technological properties. Important acidification and low proteolytic and lipolytic capacities were detected for all strains. In addition, they were able to produce exopolysaccharides and grow at hot and cold temperatures. These bacteria may be used further for manufacturing of functional foods and confirming their suitability as probiotic starter cultures.
文摘This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used to investigate the effect of the pH (5.8-6.4), storage time (0-10 days) and storage temperature (5-10 ℃), on the responses, namely, mesophiles, psychrotrophs, lipolytic psychrotrophs and proteolytic psychrotrophs counts. Results showed that increase in pH and storage time had significant effect on the microbial count. No significant effect of storage temperature was observed for all the microorganisms studied. All responses were well predicted by selected mathematical models, as denoted by coefficient of determination above 0.95.
基金supported by the Japan Society for the Promotion of Science (JSPS KAKENHI 25660220) to S.M.
文摘Background: Bovine milk contains not only a variety of nutritional ingredients but also microRNAs (miRNAs) that are thought to be secreted by the bovine mammary epithelial cells (BMECs). The objective of this study was to elucidate the production of milk-related miRNAs in BMECs under the influence of lactogenic hormones. Results: According to a microarray result of milk exosomal miRNAs prior to cellular analyses, a total of 257 miRNAs were detected in a Holstein cow milk. Of these, 18 major miRNAs of interest in the milk were selected for an expression analysis in BMEC culture that was treated with or without dexamethasone, insulin, and prolactin (DIP) to induce a lactogenic differentiation. Quantitative polymerase chain reaction (qPCR) results showed that the expressions of miR-21-Sp (P = 0.005), miR-26a (P = 0.016), and miR-320a (P = 0.011) were lower in the DIP-treated cells than in the untreated cells. In contrast, the expression of miR-339a (P-- 0.017) in the cell culture medium were lower in the DiP-treated culture than in the untreated culture. Intriguingly, the miR-148a expression in cell culture medium was elevated by DIP treatment of BMEC culture (P = 0.018). The medium-to-cell expression ratios of miR- 103 (P = 0.025), miR-148a (P 〈 0.001), and miR-223 (P = 0.013) were elevated in the DIP-treated BMECs, suggesting that the lactogenic differentiation-induced secretion of these three miRNAs in BMECs. A bioinformatic analysis showed that the miRNAs down-regulated in the BMECs were associated with the suppression of genes related to transcriptional regulation, protein phosphorylation, and tube development. Conclusion: The results suggest that the miRNAs changed by lactogenic hormones are associated with milk protein synthesis, and mammary gland development and maturation. The elevated miR-148a level in DIP-treated BMECs may be associated with its increase in milk during the lactation period of cows.
基金This work was financially supported by the National Key Research and Development Program of China(2017YFC1601600)the Foundation of Chinese Academy of Inspection and Quarantine(2022JK02).
文摘Due to the lack of effective assessment method,overheated milk commodities are often marketed as pasteurized milk on the market,which was sold in high price by fraud.Thus,this article aims to establish an approach based on metabolomics to monitor thermal processing temperature of bovine milk.Metabolomics data of bovine milk samples heated at temperatures ranging from 60℃to 150℃were achieved by ultra-performance liquid chromatography-high-resolution mass spectrometry(UPLC-HRMS)platform,followed by multivariate data analysis.A regular variation pattern of chemical composition as temperature rises was pictured,furthermore.N^(∈)carboxymethyl lysine(CML),N^(∈)-carboxyethyl lysine(CEL),pentosidine.pvrraline and lysinoalanine(LAL)were identified as 5 of the most contributed compounds to discriminate pasteurized and ultra-high-temperature(UHT)milk.By the comprehensive study on their content changes,we concluded that the optimal temperature range was 90-100℃for the generation of CML and CEL in this experiment,moreover.110~120℃for LAL.S0~100℃for pentosidine and 130-140℃for pvrraline.Finally,a predicted rule to discriminate pasteurized and UHT milk was preliminarily established based on the ratios of CML/CEL.CEL/pentosidine and CML/pentosidine.which could be applied in food labelling authentication of commercial bovine milk after further validation.
基金supported by an earmark fund for the National Key Basic Research Program of China(2011CB100805)
文摘Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk proteins were first separated by SDS polyacrylamide gel electrophoresis.After in gels digestion and extraction,phosphorylated peptides were enriched by titanium dioxide and identified by ultra performance liquid chromatography coupled with nano electrospray ionization tandem mass spectrometry.This method ensured the identification of 20 phosphorylated peptides,including 7 phosphorylated forms of α_s1-casein,8 α_s2-casein,and 5 β-casein.Eight phosphorylated sites derived from 3 α_s1-caseins,3 α_s2-caseins,and 2 β-caseins were also identified,and localized on residues Ser^61,Ser^63 and Ser^130 in α_s1-casein;Thr^145,Ser^146 and Ser^158 in α_s2-casein;and Ser^50 and Thr^56 in β-casein.These findings provide valuable information for investigating casein phosphorylation of the bovine milk.
文摘Due to the functional importance of bovine milk protein polymorphisms, their correct discrimination is of great interest both from a scientific and practical point of view. Nowadays a large number of commercial platforms are available for semiautomated or fully automated SNP geno-typing. However, in some cases the use of simple and rather cheap methods is an effective tool to be implemented within one’s own laboratory for the routine analysis of a specific SNP. The present paper describes two simple tests based on the bidirectional allele-specific polymerase chain reaction (BAS-PCR) developed for the identification of β-casein (CSN2) B and I genetic variants. The practical application of the two methods on a panel of 84 Italian Brown bulls and 100 Italian Friesian cows is also discussed, including the biological significance of the two genetic variants and the importance of taking their occurrence into account when linkage analyses are performed on milk functional properties. A combined system for analysing milk protein variants by isoelectrofocusing (IEF) and the BAS-PCR assay developed for CSN2*I is described.
基金supported by the National Natural Science Foundation of China(31972147)Project of Tianjin Science and Technology Plan(19PTSYJC00050)+1 种基金the Open Project Program of State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science and Technology(SKLFNS-KF-202011)Project program of Key Laboratory of Food Nutrition and Safety,Ministry of Education,Tianjin Key Laboratory of Food Nutrition and Safety,China(JYB202002)。
文摘In this study,a label-free,portable and reproducible immunochip based on quartz crystal microbalance(QCM)was developed for the qualitative detection ofβ-lactoglobulin(β-LG),an allergen,in milk products.Experimental parameters in the fabrication and regeneration procedure such as pH of the coupling microenvironment,amount of anti-β-LG antibody and regeneration reagent were optimized in detail.Under optimal conditions,the proposed QCM immunochip exhibited good recognition of β-LG,with a calibration curve of ΔF=12.877 C_(β-LG)^(0.4809)(R^(2)=0.9982)and limit of detection of 0.04μg/mL.Additionally,this portable QCM immunochip had good stability,high specificity,and no obvious cross-reaction to three other milk proteins(α-casein,α-lactalbumin,and lactoferrin).It could compete a qualitative measurement within5 min,and could be reused at least ten times.In the β-LG analysis of actual milk samples,the developed QCM immunochip yielded reliable and accurate results,which correlated strongly with those from the standard HPLC method(R^(2)=0.9969).Thus,the portable,stable,and reproducible QCM immunochip developed in this study allowed the rapid,cost-effectively and sensitively measure theβ-LG in milk products.
基金supported by the Development Project of China(2017YFD0502104-3)the China Agriculture Research System(CARS-36)the National Natural Science Foundation of China(No.31972589)
文摘Glucose plays a vital part in milk protein synthesis through the mTOR signaling pathway in bovine mammary epithelial cells(BMEC).The objectives of this study were to determine how glucose affects hexokinase(HK)activity in BMEC and investigate the regulatory effect of HK in kappa casein(CSN3)synthesis via the mechanistic target of rapamycin complex 1(mTORC1)signaling pathway in BMEC.For this,HK1 and HK2 were knocked out in BMEC using the CRISPR/Cas9 system.The gene and protein expression,glucose uptake,and cell proliferation were measured.We found that glucose uptake,cell proliferation,CSN3 gene expression levels,and expression of HK1 and HK2 increased with increasing glucose concentrations.Notably,glucose uptake was significantly reduced in HK2 knockout(HK2KO)BMEC treated with 17.5 mM glucose.Moreover,under the same glucose treatment conditions,the proliferative ability and abundance of CSN3 were significantly diminished in both HK1 knockout(HK1KO)and HK2KO BMEC compared with that in wild-type BEMC.We further observed that the phosphorylation levels of ribosome protein subunit 6 kinase 1(S6K1)were reduced in HK1KO and HK2KO BMEC following treatment with 17.5 mM glucose.As expected,the levels of glucose-6-phosphate and the m RNA expression levels of glycolysis-related genes were decreased in both HK1KO and HK2KO BMEC following glucose treatment.These results indicated that the knockout of HK1 and HK2 inhibited cell proliferation and CSN3 expression in BMEC under glucose treatment,which may be associated with the inactivation of the S6K1 and inhibition of glycolysis.
基金Supported by Intramural funding by Sitaram Bhartia Institute of Science and Research,New Delhi
文摘Helicobacter pylori (H. pylori) eradication is considered a necessary step in the management of peptic ulcer disease, chronic gastritis, gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. Standard triple therapy eradication regimens are inconvenient and achieve unpredictable and often poor results. Eradication rates are decreasing over time with increase in antibiotic resistance. Fermented milk and several of its component whey proteins have emerged as candidates for complementary therapy. In this context the current review seeks to summarize the current evidence available on their role in H. pylori eradication. Pertinent narrative/systematic reviews, clinical trials and laboratory studies on individual components including fermented milk, yogurt, whey proteins, lactoferrin, α-lactalbumin (α-LA), glycomacropeptide and immunoglobulin were comprehensively searched and retrieved from Medline, Embase, Scopus, Cochrane Controlled Trials Register and abstracts/proceedings of conferences up to May 2013. A preponderance of the evidence available on fermented milk-based probiotic preparations and bovine lactoferrin suggests a beneficial effect in Helicobacter eradication. Evidence for α-LA and immunoglobulins is promising while that for glycomacropeptide is preliminary and requires substantiation. The magnitude of the potential benefit documented so far is small and the precise clinical settings are ill defined. This restricts the potential use of this group as a complementary therapy in a nutraceutical setting hinging on better patient acceptability/compliance. Further work is necessary to identify the optimal substrate, fermentation process, dose and the ideal clinical setting (prevention/treatment, first line therapy/recurrence, symptomatic/asymptomatic, gastritis/ulcer diseases etc.). The potential of this group in high antibiotic resistance or treatment failure settings presents interesting possibilities and deserves further exploration.
基金supported by the National Natural Science Foundation of China (Grant No. 31272408 30972080)+2 种基金the National 863 Program of China (Grant No. 2013AA102505)the Program of National Beef Cattle and yak Industrial Technology System (CARS-38)the Agricultural Science and Technology Innovation Projects of Shanxi Province (No. 2012NKC01-13).
文摘Objective To investigate the 23 bp and 12 bp insertion/deletion(indel)mutations within the bovine prion protein(PRNP)gene in Chinese dairy cows,and to detect the associations of two indel mutations with BSE susceptibility and milk performance.Methods Based on bovine PRNP gene sequence,two pairs of primers for testing the 23 bp and 12 bp indel mutations were designed.The PCR amplification and agarose electrophoresis were carried out to distinguish the different genotypes within the mutations.Moreover,based on previous data from other cattle breeds and present genotypic and allelic frequencies of two indels mutations in this study,the corrections between the two indel mutations and BSE susceptibility were tested,as well as the relationships between the mutations and milk performance traits were analyzed in this study based on the statistical analyses.Results In the analyzed Chinese Holstein population,the frequencies of two"del"alleles in 23 bp and 12 bp indel muations were more frequent.The frequency of haplotype of 23del-12del was higher than those of 23del-12ins and 23ins-12del.From the estimated r2and D’values,two indel polymorphisms were linked strongly in the Holstein population(D’=57.5%,r2=0.257).Compared with the BSE-affected cattle populations from the reported data,the significant differences of genotypic and allelic frequencies were found among present Holstein and some BSE-affected populations(P<0.05 or P<0.01).Similarly,there were significant frequency distribution differences of genotypes and alleles among Chinese Holstein and several previous reported healthy dairy cattle(P<0.05 or P<0.01).Moreover,association of genotype and combined genotypes of two indel polymorphisms with milk performance and resistant mastitis traits were analyzed in Holstein population,but no significant differences were found(P>0.05).Conclusions These observations revealed that the influence of two indel mutations within the bovine PRNP gene on BSE depended on the breed and they did not affect the milk production traits,which layed the foundation for future selection of resistant animals,and for improving health conditions for dairy breeding against BSE in China.