期刊文献+
共找到884篇文章
< 1 2 45 >
每页显示 20 50 100
Bayesian network-based survival prediction model for patients having undergone post-transjugular intrahepatic portosystemic shunt for portal hypertension
1
作者 Rong Chen Ling Luo +3 位作者 Yun-Zhi Zhang Zhen Liu An-Lin Liu Yi-Wen Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第13期1859-1870,共12页
BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managi... BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT. 展开更多
关键词 bayesian network CIRRHOSIS Portal hypertension Transjugular intrahepatic portosystemic shunt Survival prediction model
下载PDF
基于Bow-Tie模型和贝叶斯网络的LNG加气站动态风险分析 被引量:5
2
作者 陈静 董敏 史博文 《石油工业技术监督》 2023年第2期41-49,77,共10页
城市地区LNG运输与LNG加气站的快速发展,可能会对公共安全和资产构成严重威胁。针对LNG加气站开展风险分析,尤其是动态风险分析将具有重要意义。建立了LNG加气站的Bow-Tie模型,并根据映射规则将其转化为贝叶斯网络模型。以模糊集理论和... 城市地区LNG运输与LNG加气站的快速发展,可能会对公共安全和资产构成严重威胁。针对LNG加气站开展风险分析,尤其是动态风险分析将具有重要意义。建立了LNG加气站的Bow-Tie模型,并根据映射规则将其转化为贝叶斯网络模型。以模糊集理论和多层次专家评判得到的模糊概率作为先验概率,对LNG加气站系统进行了动态风险评估。结果表明,误操作、阀组失效、密封失效和充装过程相关失效是造成LNG加气站泄漏的主要影响因素。因此,要有效避免LNG加气站泄漏,甚至火灾爆炸事故,就必须加强LNG加气站人员管理培训并提高技能水平,同时定期对阀组和密封材料进行检查和维护,严格规范充装操作过程。 展开更多
关键词 LNG加气站 bow-tie模型 贝叶斯网络 动态风险分析
下载PDF
Estimating survival benefit of adjuvant therapy based on a Bayesian network prediction model in curatively resected advanced gallbladder adenocarcinoma 被引量:10
3
作者 Zhi-Min Geng Zhi-Qiang Cai +9 位作者 Zhen Zhang Zhao-Hui Tang Feng Xue Chen Chen Dong Zhang Qi Li Rui Zhang Wen-Zhi Li Lin Wang Shu-Bin Si 《World Journal of Gastroenterology》 SCIE CAS 2019年第37期5655-5666,共12页
BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC... BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC as well as to identify the role of adjuvant therapy.METHODS Patients with curatively resected advanced gallbladder adenocarcinoma(T3 and T4)were selected from the Surveillance,Epidemiology,and End Results database between 2004 and 2015.A survival prediction model based on Bayesian network(BN)was constructed using the tree-augmented na?ve Bayes algorithm,and composite importance measures were applied to rank the influence of factors on survival.The dataset was divided into a training dataset to establish the BN model and a testing dataset to test the model randomly at a ratio of 7:3.The confusion matrix and receiver operating characteristic curve were used to evaluate the model accuracy.RESULTS A total of 818 patients met the inclusion criteria.The median survival time was 9.0 mo.The accuracy of BN model was 69.67%,and the area under the curve value for the testing dataset was 77.72%.Adjuvant radiation,adjuvant chemotherapy(CTx),T stage,scope of regional lymph node surgery,and radiation sequence were ranked as the top five prognostic factors.A survival prediction table was established based on T stage,N stage,adjuvant radiotherapy(XRT),and CTx.The distribution of the survival time(>9.0 mo)was affected by different treatments with the order of adjuvant chemoradiotherapy(cXRT)>adjuvant radiation>adjuvant chemotherapy>surgery alone.For patients with node-positive disease,the larger benefit predicted by the model is adjuvant chemoradiotherapy.The survival analysis showed that there was a significant difference among the different adjuvant therapy groups(log rank,surgery alone vs CTx,P<0.001;surgery alone vs XRT,P=0.014;surgery alone vs cXRT,P<0.001).CONCLUSION The BN-based survival prediction model can be used as a decision-making support tool for advanced GBC patients.Adjuvant chemoradiotherapy is expected to improve the survival significantly for patients with node-positive disease. 展开更多
关键词 GALLBLADDER CARCINOMA bayesian network Surgery ADJUVANT therapy Prediction model
下载PDF
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
4
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A bayesian regularized BP neural network model sum of square weights
下载PDF
Bayesian networks modeling for thermal error of numerical control machine tools 被引量:7
5
作者 Xin-hua YAO Jian-zhong FU Zi-chen CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1524-1530,共7页
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also... The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy. 展开更多
关键词 bayesian networks (BNs) Thermal error model Numerical control (NC) machine tool
下载PDF
Winning Probability Estimation Based on Improved Bradley-Terry Model and Bayesian Network for Aircraft Carrier Battle 被引量:1
6
作者 Yuhui Wang Wei Wang Qingxian Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第2期39-44,共6页
To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are cl... To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are classified into three types,which are aircraft,ship and submarine. Then,the attack ability value and defense ability value for each type of armed forces are estimated by using BP neural network,whose training results of sample data are consistent with the estimation results. Next,compared the assessment values through an improved Bradley-Terry model and constructed a Bayesian network to do the global assessment,the winning probabilities of both combat sides are obtained. Finally,the winning probability estimation for a navy battle is given to illustrate the validity of the proposed scheme. 展开更多
关键词 aircraft carrier battle BP neural network Bradley-Terry model bayesian networks
下载PDF
Linking Structural Equation Modeling with Bayesian Network and Its Application to Coastal Phytoplankton Dynamics in the Bohai Bay
7
作者 XU Xiao-fu SUN Jian +2 位作者 NIE Hong-tao YUAN De-kui TAO Jian-hua 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期733-748,共16页
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e... Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay. 展开更多
关键词 structural equation modeling bayesian networks ecological modeling Bohai Bay phytoplankton dynamics
下载PDF
Research on Bayesian Network Based User's Interest Model
8
作者 ZHANG Weifeng XU Baowen +1 位作者 CUI Zifeng XU Lei 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期809-813,共5页
It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing ... It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability. 展开更多
关键词 bayesian network interest model feature selection
下载PDF
Building Bayesian Network(BN)-Based System Reliability Model by Dual Genetic Algorithm(DGA)
9
作者 游威振 钟小品 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期914-918,共5页
A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con... A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples. 展开更多
关键词 bayesian network(BN)model dual genetic algorithm(DGA) system reliability historical data
下载PDF
Bayesian Network Model of Product Information Diffusion and Reasoning of Influence
10
作者 Xuehua Sun Shaojie Hou +2 位作者 Ning Cai Wenxiu Ma Surui Zhao 《Journal of Data Analysis and Information Processing》 2020年第4期267-281,共15页
Information diffusion on social media has become a key strategy in people’s daily interactions. This paper studies consumers’ participation in the product information diffusion, and analyzes the complexity of inform... Information diffusion on social media has become a key strategy in people’s daily interactions. This paper studies consumers’ participation in the product information diffusion, and analyzes the complexity of information diffusion which is affected by many factors. Prior investigations of information diffusion have primarily focused on the composition of diffusion networks with independent factors and the intricacy of the process has not been completely evaluated. The majority of prior investigations have focused on strategies and the moving forces in social media processes and the determination of influential seed nodes, with few evaluations conducted about the factors affecting consumers’ choices in information diffusion. In this study, a Bayesian network model of product information diffusion was created to examine the links between factors and consumer deportment. It revealed how those factors had an impact on each other and on consumer deportment choice. The innovation of the thesis is reflected in the exploration and analysis of the specific communication path of product information diffusion, which provides a better marketing idea and practical method for the development of mobile e-commerce. The research findings can help identify the quantitative relationships between the factors affecting the process of product information diffusion and user behavior. 展开更多
关键词 Product Information Diffusion bayesian network model Influence Reasoning Consumer Behaviors Clique Tree
下载PDF
Bayesian Network and Factor Analysis for Modeling Pine Wilt Disease Prevalence
11
作者 Mingxiang Huang Liang Guo +1 位作者 Jianhua Gong Weijun Yang 《Journal of Software Engineering and Applications》 2013年第3期13-17,共5页
A Bayesian network (BN) model was developed to predict susceptibility to PWD(Pine Wilt Disease). The distribution of PWD was identified using QuickBird and unmanned aerial vehicle (UAV) images taken at different times... A Bayesian network (BN) model was developed to predict susceptibility to PWD(Pine Wilt Disease). The distribution of PWD was identified using QuickBird and unmanned aerial vehicle (UAV) images taken at different times. Seven factors that influence the distribution of PWD were extracted from the QuickBird images and were used as the independent variables. The results showed that the BN model predicted PWD with high accuracy. In a sensitivity analysis, elevation (EL), the normal differential vegetation index (NDVI), the distance to settlements (DS) and the distance to roads (DR) were strongly associated with PWD prevalence, and slope (SL) exhibited the weakest association with PWD prevalence. The study showed that BN is an effective tool for modeling PWD prevalence and quantifying the impact of various factors. 展开更多
关键词 PINE WILT Disease bayesian network modelING Factor Analysis
下载PDF
Predicting the nephrotoxicity of Chinese herbal medicines based on a Bayesian network model
12
作者 Li-Juan Tan Liang Chen +2 位作者 Jia-Hui Huang Ze-Hai Fang Hong-Jie Liu 《TMR Pharmacology Research》 2022年第1期22-29,共8页
Objective:Based on a Bayesian network model(BNM),we constructed and evaluated a predictive model of Chinese herbal medicines(CHMs)nephrotoxicity,explored its influencing factors,and provided a reference for the preven... Objective:Based on a Bayesian network model(BNM),we constructed and evaluated a predictive model of Chinese herbal medicines(CHMs)nephrotoxicity,explored its influencing factors,and provided a reference for the prevention and control of nephrotoxicity.Methods:We searched for CHMs with nephrotoxicity through academic journals and academic works,screened non-nephrotoxic CHMs,and then tested the correlation between nephrotoxic and non-nephrotoxic CHMs and their four properties,five flavours,and channel tropism.The screened variables were used to construct the Bayesian network model(BNM),predict important factors affecting the nephrotoxicity of Chinese herbal medicines(CHMs),draw the receiver operating characteristic(ROC)curve of the model,and calculate the area under the curve(AUC)to evaluate the forecasting effect of the model.Results:Medicinal property theory(four properties and five flavours)are important factors affecting the nephrotoxicity of CHMs.Nephrotoxic and non-nephrotoxic CHMs are related to their four propertiesand five flavours(P<0.05).BNM showed that sweetness and flatness wereimportant protective factors for nephrotoxicity of CHMs;the prediction accuracy was 77.92%,the AUC result of the model ROC curve was 0.661(95%CI:0.620-0.701),and the best sensitivity(0.736)and specificity(0.571)were obtained at 0.65.Discussion:Modern mathematical statistics and modeling methods have certain reference significance and application value for the prediction of CHMs nephrotoxicity and toxicology research. 展开更多
关键词 Chinese herbal medicines four properties five flavours channel tropism prediction of nephrotoxicity bayesian network model
下载PDF
智慧社区项目建设的社会稳定风险评估——基于Bow-tie和贝叶斯模型的实证分析 被引量:9
13
作者 李琼 杨洁 詹夏情 《上海行政学院学报》 CSSCI 北大核心 2019年第5期89-99,共11页
智慧社区作为智慧城市建设过程中的基层治理单元,承载着城市治理模式智慧化转型发展的重要功能。这一重大事项的建设落地将明显提升人民的生活水平,同时蕴含着潜在的社会稳定风险因素。本文选取上海市X镇智慧社区建设项目开展实证研究,... 智慧社区作为智慧城市建设过程中的基层治理单元,承载着城市治理模式智慧化转型发展的重要功能。这一重大事项的建设落地将明显提升人民的生活水平,同时蕴含着潜在的社会稳定风险因素。本文选取上海市X镇智慧社区建设项目开展实证研究,结合Bow-tie模型与重大事项社会稳定风险评估机制构建社会稳定风险识别模型,并运用贝叶斯网络模型进行风险测量,得出该项目整体为中等风险等级,其中项目监管机制、风险预警和应急方案、资金筹措情况、群众接受度和满意度、项目公开与宣传情况及舆情反馈机制为高风险,当地经济发展承托能力、预期收益、社会心理及政府执行风险为中风险。基于这一测量结果,参考贝叶斯模型图中各变量的相关关系与Bow-tie模型,实现智慧社区建设问题的精准识别与高效排查,最终顺利推进智慧城市建设。 展开更多
关键词 智慧社区 社会稳定风险 bow-tie模型 贝叶斯网络
下载PDF
韧性城市视角下地铁洪涝灾害风险分析——基于Bow-Tie—贝叶斯网络模型 被引量:21
14
作者 闫绪娴 王俊丽 +1 位作者 范玲 李文超 《灾害学》 CSCD 北大核心 2022年第2期36-43,共8页
极端暴雨易引发地铁洪涝灾害,其致灾因子具有复杂性特征,辨识地铁洪涝灾害的致灾因素,可以有效提升地铁系统应对洪涝灾害的韧性。为此,建立了Bow-Tie—贝叶斯网络的灾害风险分析模型,利用事故树构建致灾模型,再以贝叶斯网络模型预测灾... 极端暴雨易引发地铁洪涝灾害,其致灾因子具有复杂性特征,辨识地铁洪涝灾害的致灾因素,可以有效提升地铁系统应对洪涝灾害的韧性。为此,建立了Bow-Tie—贝叶斯网络的灾害风险分析模型,利用事故树构建致灾模型,再以贝叶斯网络模型预测灾害的后验概率。通过节点后验概率、关键重要度分析等对地铁洪涝灾害的基本事件的重要度进行分析,提取出导致灾害发生的关键基本事件。分析结果表明,地铁和环境的不安全状态和管理的缺陷是导致灾害发生的重要中间事件。该文从灾前预防、灾中抵御、灾后恢复三个维度对地铁洪涝灾害提出针对性的对策建议,对建设更具韧性和包容性的社会-生态系统具有重要的借鉴意义。 展开更多
关键词 韧性城市 bow-tie—贝叶斯网络模型 地铁洪涝灾害 重要度分析
下载PDF
常规公交风险的SEM与Bayesian Network组合评估方法研究 被引量:4
15
作者 宗芳 于萍 +1 位作者 吴挺 陈相茹 《交通信息与安全》 CSCD 北大核心 2018年第4期22-28,共7页
常规公交系统具有载客量大、班次多、线路固定等特点,存在多种安全风险隐患。为综合评估常规公交风险,对国内外554条事故数据分析整理,构建了常规公交风险指标体系。建立了常规公交风险评估的结构方程模型,得到常规公交风险因素对事故... 常规公交系统具有载客量大、班次多、线路固定等特点,存在多种安全风险隐患。为综合评估常规公交风险,对国内外554条事故数据分析整理,构建了常规公交风险指标体系。建立了常规公交风险评估的结构方程模型,得到常规公交风险因素对事故的单向拓扑结构。在结构学习的基础上,利用信息熵理论研究风险因素对预测结果可信度的影响权重,从而进行变量筛选。以失火事故为例利用贝叶斯网络模型进行了城市常规公交风险评估参数学习。研究结果表明,失火事故的主要风险因素为油气泄漏、车内外温度均较高等。在风险因素组合作用下失火事故发生概率范围为0.002 1至0.842 9。所建模型预测精度高,验证了方法的科学性和准确性,可用于进行定量化的常规公交风险评估。 展开更多
关键词 风险评估 常规公交 结构方程模型 贝叶斯网络模型 信息熵
下载PDF
Fault detection and diagnosis for data incomplete industrial systems with new Bayesian network approach 被引量:15
16
作者 Zhengdao Zhang Jinlin Zhu Feng Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期500-511,共12页
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d... For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements. 展开更多
关键词 fault detection and diagnosis bayesian network Gaussian mixture model data incomplete non-imputation.
下载PDF
Research on the self-defence electronic jamming decision-making based on the discrete dynamic Bayesian network 被引量:6
17
作者 Tang Zheng Gao Xiaoguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期702-708,共7页
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se... The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly. 展开更多
关键词 self-defense electronic jamming discrete dynamic bayesian network decision-making model
下载PDF
A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks 被引量:5
18
作者 MAHMOOD Ahmad TANG Xiao-wei +2 位作者 QIU Jiang-nan GU Wen-jing FEEZAN Ahmad 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期500-516,共17页
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ... Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon. 展开更多
关键词 bayesian belief network cone penetration test seismic soil liquefaction interpretive structural modeling structural learning
下载PDF
Risk-based water quality decision-making under small data using Bayesian network 被引量:3
19
作者 张庆庆 许月萍 +1 位作者 田烨 张徐杰 《Journal of Central South University》 SCIE EI CAS 2012年第11期3215-3224,共10页
A knowledge-based network for Section Yidong Bridge,Dongyang River,one tributary of Qiantang River,Zhejiang Province,China,is established in order to model water quality in areas under small data.Then,based on normal ... A knowledge-based network for Section Yidong Bridge,Dongyang River,one tributary of Qiantang River,Zhejiang Province,China,is established in order to model water quality in areas under small data.Then,based on normal transformation of variables with routine monitoring data and normal assumption of variables without routine monitoring data,a conditional linear Gaussian Bayesian network is constructed.A "two-constraint selection" procedure is proposed to estimate potential parameter values under small data.Among all potential parameter values,the ones that are most probable are selected as the "representatives".Finally,the risks of pollutant concentration exceeding national water quality standards are calculated and pollution reduction decisions for decision-making reference are proposed.The final results show that conditional linear Gaussian Bayesian network and "two-constraint selection" procedure are very useful in evaluating risks when there is limited data and can help managers to make sound decisions under small data. 展开更多
关键词 water quality risk pollution reduction decisions bayesian network conditional linear Gaussian model small data
下载PDF
Ontology Mapping Based on Bayesian Network 被引量:1
20
作者 张凌宇 陶佰睿 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期681-687,共7页
Ontology mapping is a key interoperability enabler for the semantic web. In this paper,a new ontology mapping approach called ontology mapping based on Bayesian network( OM-BN) is proposed. OM-BN combines the models o... Ontology mapping is a key interoperability enabler for the semantic web. In this paper,a new ontology mapping approach called ontology mapping based on Bayesian network( OM-BN) is proposed. OM-BN combines the models of ontology and Bayesian Network,and applies the method of Multi-strategy to computing similarity. In OM-BN,the characteristics of ontology,such as tree structure and semantic inclusion relations among concepts,are used during the process of translation from ontology to ontology Bayesian network( OBN). Then the method of Multi-strategy is used to create similarity table( ST) for each concept-node in OBN. Finally,the iterative process of mapping reasoning is used to deduce new mappings from STs,repeatedly. 展开更多
关键词 COMPONENT ontology mapping multi-strategy bayesian network model
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部