期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Noise reduction mechanism of high-speed railway box-girder bridges installed with MTMDs on top plate
1
作者 Xiaoan Zhang Xiaoyun Zhang +2 位作者 Jianjin Yang Li Yang Guangtian Shi 《Railway Engineering Science》 EI 2024年第4期518-532,共15页
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can... The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate. 展开更多
关键词 High-speed railway box-girder bridge MTMDs Noise control design Noise reduction mechanism
下载PDF
Analysis of free vibration characteristic of steel-concrete composite box-girder considering shear lag and slip 被引量:9
2
作者 周旺保 蒋丽忠 余志武 《Journal of Central South University》 SCIE EI CAS 2013年第9期2570-2577,共8页
Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated st... Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated stress,shear deformation,slip,as well as rotational inertia were induced.Therefore,natural frequency equations were obtained for the boundary types,such as simple support,cantilever,continuous girder and fixed support at two ends.The ANSYS finite element solutions were compared with the analytical solutions by calculation examples and the validity of the proposed approach was verified,which also shows the correctness of longitudinal warping displacement functions.Some meaningful conclusions for engineering design were obtained.The decrease extent of each order natural frequency of the steel-concrete composite box-girder is great under action of the shear lag effect.The shear-lag effect of steel-concrete composite box girder increases when frequency order rises,and increases while span-width ratio decreases.The proposed approach provides theoretical basis for further research of free vibration characteristics of steel-concrete composite box-girder. 展开更多
关键词 steel-concrete composite box-girder shear lag effect shear deformation SLIP free vibration
下载PDF
Dynamic finite element model updating of prestressed concrete continuous box-girder bridge 被引量:6
3
作者 Lin Xiankun Zhang Lingmi +1 位作者 Guo Qintao Zhang Yufeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期399-407,共9页
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a... The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge . 展开更多
关键词 prestressed concrete continuous box-girder bridge field ambient vibration testing dynamic characteristics model updating accelerating genetic algorithm objective function
下载PDF
Free Vibration Analysis of RC Box-Girder Bridges Using FEM
4
作者 Preeti Agarwal Priyaranjan Pal Pradeep Kumar Mehta 《Sound & Vibration》 EI 2022年第2期105-125,共21页
The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method.The fundamental frequency is determined in straight,skew,curved and skew-curved box-girder bridges.It i... The free vibration analysis of simply supported box-girder bridges is carried out using the finite element method.The fundamental frequency is determined in straight,skew,curved and skew-curved box-girder bridges.It is important to analyse the combined effect of skewness and curvature because skew-curved box-girder bridge behaviour cannot be predicted by simply adding the individual effects of skewness and curvature.At first,an existing model is considered to validate the present approach.A convergence study is carried out to decide the mesh size in the finite element method.An exhaustive parametric study is conducted to determine the fundamental frequency of box-girder bridges with varying skew angle,curve angle,span,span-depth ratio and cell number.The skew angle is varied from 0°to 60°,curve angle is varied from 0°to 60°,span is changed from 25 to 50 m,span-depth ratio is varied from 10 to 16,and single cell&double cell are used in the present study.A total of 420 bridge models are used for parametric study in the investigation.Mode shapes of the skew-curved bridge are also presented.The fundamental frequency of the skew-curved box-girder bridge is found to be more than the straight bridge,so,the skew-curved box-girder bridge is preferable.The present study may be useful in the design of box-girder bridges. 展开更多
关键词 Fundamental frequency skew-curved box-girder bridge SINGLE-CELL double-cell curve angle skew angle FEM
下载PDF
Simulation of Temperature Field in Original Segment of Concrete Box-Girder Bridge
5
作者 徐丰 徐雯 王波 《Journal of Southwest Jiaotong University(English Edition)》 2009年第2期102-108,共7页
Temperature field and its variation with time are necessary for analyzing the thermo-mechanical performance of mass concrete structures at their early ages. This paper carries out a temperature field simulation analys... Temperature field and its variation with time are necessary for analyzing the thermo-mechanical performance of mass concrete structures at their early ages. This paper carries out a temperature field simulation analysis for an original segment of a real box girder bridge with the finite element software ANSYS. Two representative exothermic rate models are used to describe the heat- releasing process caused by the cement hydration in concrete. The exothermic rate model that conforms to reality more closely is recognized by comparing the simulation results with the data gathered from the optical fiber temperature sensors pre-embedded in the original segment. The air temperature and wind velocity that constitute thermal boundary conditions are determined in the light of the local meteorological department and correlative research achievements of recent years. Moreover, the consideration for the steel formwork acting as a barrier to heat loss is also proved to be beneficial to improve the simulation effect. 展开更多
关键词 Concrete box-girder bridge Original segment Thermal analysis Hydration heat Numerical simulation
下载PDF
Field test on temperature field and thermal stress for prestressed concrete box-girder bridge 被引量:2
6
作者 Baoguo CHEN Rui DING +1 位作者 Junjie ZHENG Shibiao ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第2期158-164,共7页
A field test was conducted to investigate the distribution of temperature field and the variation of thermal stress for a prestressed concrete(PC)box-girder bridge.The change of hydration heat temperature consists of ... A field test was conducted to investigate the distribution of temperature field and the variation of thermal stress for a prestressed concrete(PC)box-girder bridge.The change of hydration heat temperature consists of four periods:temperature rising period,constant temperature period,rapid temperature fall period and stow temperature fall period.The peak value of hydration heat temperature increases with the increasing casting temperature of concrete;the relation between them is approximately linear.According to field tests,the thermal stress incurred by hydration heat may induce temperature cracks on the PC box-girder.Furthermore,the nonlinear distribution of temperature gradient and the fluctuation of thermal stress induced by exposure to sunlight were also obtained based on continuous in-situ monitoring.Such results show that the prevailing Chinese Code(2004)is insufficient since it does not take into account the temperature gradient of the bottom slab.Finally,some preventive measures against temperature cracks were proposed based on related studies.The conclusions can provide valuable reference for the design and construction of PC box-girder bridges. 展开更多
关键词 box-girder bridge field test hydration heat temperature field temperature gradient thermal stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部