超大浮式结构(very large floating structure,简称VLFS)是集空港和海港为一体的大型海上多功能浮式结构,现有研究大多关注规则波下刚性模块柔性连接模型的动力响应,忽略了台风浪极端环境下海上机场自身柔性引起的非线性振动特性。针对...超大浮式结构(very large floating structure,简称VLFS)是集空港和海港为一体的大型海上多功能浮式结构,现有研究大多关注规则波下刚性模块柔性连接模型的动力响应,忽略了台风浪极端环境下海上机场自身柔性引起的非线性振动特性。针对此问题,提出了一种新型多柔-刚性混合模块建模方法,采用Jonswap谱特征参数对台风“鲇鱼”过境实测海浪谱开展了精细化仿真模拟,分析了台风浪下海上机场VLFS整体和局部非线性动态响应特性,揭示了海上机场与环境荷载之间的能量转换机理。结果表明:海上机场多柔-刚性混合模块模型可以较好地反映此类VLFS结构动力响应特性;海上机场超长柔性及台风浪场不均匀性使其结构呈现显著非线性,位移、转角和水弹性变形分别以沿波向、绕展向和沿垂向为主,极值应力主要分布于撑杆附近;环境荷载能量和结构重力势能在初始阶段主要转换为系泊势能,稳定阶段则主要转换为结构动能和弹性势能。展开更多
We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The ...We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.展开更多
The application of very large floating structure (VLFS) to the utilization of ocean space and exploitation of ocean resources has become one of the issues of great interest in international ocean engineering field. Ow...The application of very large floating structure (VLFS) to the utilization of ocean space and exploitation of ocean resources has become one of the issues of great interest in international ocean engineering field. Owing to the advantage of simplicity in structure and low cost of construction and maintenance, box-type VLFS can be used in the calm water area near the coast as the structure configuration of floating airport. In this paper, a 3D linear hydroelastic theory is used to study the dynamic response of box-type VLFS in sinusoidal regular waves. A beam model and a 3D FEM model are respectively employed to describe the dynamic characteristics of the box-type Structure in vacuum. A hydrodynamic model (3D potential theory of flexible body) is applied to investigate the effect of different dry models on the hydroelastic response of box-type structure. Based on the calculation of hydroelastic response in regular waves, the rigid body motion displacement, flexible deflection, and the short term and long term wave induced bending moments are also predicted.展开更多
Very Large Floating Structures (VLFS) have received considerable attention recently. Efficient and accurate estimation of their hydroelastic responses in waves is very important for the design. The most efficient appr...Very Large Floating Structures (VLFS) have received considerable attention recently. Efficient and accurate estimation of their hydroelastic responses in waves is very important for the design. The most efficient approach would obviously be the analytical one, Within the category of analytical approaches, the simplified method proposed by Ohkusu and his colleague are of special characteristics. However, when one studies their methods, several questions arise. The purpose of this paper is to critically study the simplified methods proposed by Ohkusu and his colleague in order to answer these questions. Some problems in their original methods have been found and possible improvements are suggested. It is concluded that the improved simplified method using the same idea of Ohkusu and his colleague could provide a reasonable estimate of the hydroelastic response of mat-like VLFS in a certain range of incident angles of waves.展开更多
This paper numerically and experimentally investigates the hydrodynamic interaction between two semi-submersible type VLFS modules in the frequency domain. Model tests were conducted to investigate the relationship be...This paper numerically and experimentally investigates the hydrodynamic interaction between two semi-submersible type VLFS modules in the frequency domain. Model tests were conducted to investigate the relationship between interactions and wave headings. Numerical studies were performed by solving the radiation-diffraction problem and were validated against the experimental results. Motion Response Amplitude Operators (RAOs) were obtained from numerical and experimental studies. The dependency of the hydrodynamic interaction effect on wave headings is clarified. The influence of different wave periods on the motion responses of two-module VLFS and wave elevations in the gap is studied. The results indicate that the hydrodynamic interactions of the two modules are directly related to the wave headings and the periods of the incident wave. The shielding effect plays an important role in short wave, and the influence decreases with the increase of the incident wavelength. The numerical results based on the diffraction-radiation code can give a relatively good estimation to the responses in short wave while for long wave, it would over-predict the response.展开更多
Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS c...Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS can be simplified as an elastic foundation beam model or a multi-floating-module model connected by elastic hinges.According to equivalent displacement of the two models in static analysis,the problem of rotation stiffness of elastic hinges can be solved.Then,based on the potential flow theory,the dynamic responding analysis of multi-floatingmodule model under wave loads can be computed in ANSYS-AQWA software.By assembling the time domain analysis results of each module,the dynamic responses of the VLFS can be obtained.Validation of the method is conducted through a series of comparison calculations,which mainly includes a continuous structure and a three-part structure connected by hinges in regular waves.The results of this paper method show a satisfactory agreement with the experiment and calculation data given in relative references.展开更多
The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water ...The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water wave theory.Darcy’s law is adopted to represent energy dissipation in pores.It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop.In the analytic method,the eigenfunction expansion-matching method(EEMM)for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method.The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters,such as plate length,horizontal position,submerged depth and porosity.It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies,while solid plate has better damping effect at high frequencies.The optimal ratio of plate length to water depth is 0.25-0.375,and the optimal ratio of submerged depth to water depth is 0.09-0.181.展开更多
This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direc...This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy’s law. The hybrid finite element-boundary element(FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves.Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.展开更多
With the advantages on rapid construction,no limitation of extent,less influence on environment, the VLFS has been turned into the focus of coastal and offshore engineering studying.As the platform,VLFS was built as a...With the advantages on rapid construction,no limitation of extent,less influence on environment, the VLFS has been turned into the focus of coastal and offshore engineering studying.As the platform,VLFS was built as airport,huge oil house etc,and would play the role of ocean economics,politics and military.The restrictive condition of VLFS is strong wave by monsoon,seismic,serious bomb etc.The floating breakwater should be put forward to shelter VLFS.The analysis of wave condition including typhoon route,archipelago and water depth is performed in this paper.The advantage and disadvantage are compared between VLFS and the marine structure from land.展开更多
A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport,is proposed.The telescopic piles can au...A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport,is proposed.The telescopic piles can automatically plug in the soil to resist the environmental loads and pull out from the soil to evacuate or move on to the next operational sea.The feasibility demonstration of the conceptual design includes two parts:function verification and structure design.In the latter part of the conceptual design,a time-domain structural analysis is firstly conducted by using Abaqus software.The simulation results suggest that the preliminary structure scheme is not optimum due to the insufficient structure utilization,although both structure safety of the piles and positioning accuracy are guaranteed.To realize a cost reduction of construction and installation,a Genetic Algorithm-Finite Element Analysis(GA-FEA)method is employed to perform structural optimization.After optimization,31 percent of the weight of each pile is reduced and higher structure utilization is maintained.The difference of the self-weight and allowable buoyancy of a single module(SMOD)of a semisubmersible-type VLFS is much larger than the weight of the piles.Combined with the function verification in our previous work,the conceptual design of using the novel telescopic pile to position VLFS is demonstrated to be feasible.展开更多
Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to det...Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to determine the effects of mooring conditions on the hydroelastic response,mooring force,incident coefficient,reflection coefficient and energy dissipation coefficient.Eight mooring cables are symmetrically arranged on both sides of the model.The floating body model satisfies the similarity of stiffness and gravity,while the cable satisfies the similarity of elasticity and gravity.The results show that the effect of mooring type on mooring force is greater than that on hydroelastic response.Increasing the initial tension of the mooring cable will reduce the amplitude of the leeward of the VLFS model.The mooring angle of the mooring cable will affect the maximum mooring force and the initial tension of the mooring line will affect the wave period in which the maximum mooring force occurs.The transmission coefficient and wave energy dissipation coefficient will change regularly with different mooring types.These results may provide a reference to facilitate the mooring design of VLFS.展开更多
A box-type solar cooker with an inclined surface, equipped with a concentration reflector to allow maximum energy to be collected, enabled cooking tests to be carried out in the rainy season. Different thermocouples w...A box-type solar cooker with an inclined surface, equipped with a concentration reflector to allow maximum energy to be collected, enabled cooking tests to be carried out in the rainy season. Different thermocouples were implanted on various places of the cooker. The temperature measurements from these sensors were taken every 10 minutes.<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The tests presented in this article relate to the preparation of eggs and rice. The absorber temperatures during the tests exceeded 100<span style="white-space:nowrap;">°</span>C. The cooking times were between 1</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">50</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">min and 2</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">20 min despite the numerous cloudy periods. The cooker made it possible to reach sufficient temperatures for healthy cooking of food. The results obtained for these first tests are satisfactory and very encouraging.</span></span></span>展开更多
文摘超大浮式结构(very large floating structure,简称VLFS)是集空港和海港为一体的大型海上多功能浮式结构,现有研究大多关注规则波下刚性模块柔性连接模型的动力响应,忽略了台风浪极端环境下海上机场自身柔性引起的非线性振动特性。针对此问题,提出了一种新型多柔-刚性混合模块建模方法,采用Jonswap谱特征参数对台风“鲇鱼”过境实测海浪谱开展了精细化仿真模拟,分析了台风浪下海上机场VLFS整体和局部非线性动态响应特性,揭示了海上机场与环境荷载之间的能量转换机理。结果表明:海上机场多柔-刚性混合模块模型可以较好地反映此类VLFS结构动力响应特性;海上机场超长柔性及台风浪场不均匀性使其结构呈现显著非线性,位移、转角和水弹性变形分别以沿波向、绕展向和沿垂向为主,极值应力主要分布于撑杆附近;环境荷载能量和结构重力势能在初始阶段主要转换为系泊势能,稳定阶段则主要转换为结构动能和弹性势能。
文摘We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 50039010)
文摘The application of very large floating structure (VLFS) to the utilization of ocean space and exploitation of ocean resources has become one of the issues of great interest in international ocean engineering field. Owing to the advantage of simplicity in structure and low cost of construction and maintenance, box-type VLFS can be used in the calm water area near the coast as the structure configuration of floating airport. In this paper, a 3D linear hydroelastic theory is used to study the dynamic response of box-type VLFS in sinusoidal regular waves. A beam model and a 3D FEM model are respectively employed to describe the dynamic characteristics of the box-type Structure in vacuum. A hydrodynamic model (3D potential theory of flexible body) is applied to investigate the effect of different dry models on the hydroelastic response of box-type structure. Based on the calculation of hydroelastic response in regular waves, the rigid body motion displacement, flexible deflection, and the short term and long term wave induced bending moments are also predicted.
基金The project was supported by the National Natural Science Foundation of China (Grant No. 50039010) the Science and Technology Development Foundation of Shanghai Municipal Government (Grant No. 00XD14015).
文摘Very Large Floating Structures (VLFS) have received considerable attention recently. Efficient and accurate estimation of their hydroelastic responses in waves is very important for the design. The most efficient approach would obviously be the analytical one, Within the category of analytical approaches, the simplified method proposed by Ohkusu and his colleague are of special characteristics. However, when one studies their methods, several questions arise. The purpose of this paper is to critically study the simplified methods proposed by Ohkusu and his colleague in order to answer these questions. Some problems in their original methods have been found and possible improvements are suggested. It is concluded that the improved simplified method using the same idea of Ohkusu and his colleague could provide a reasonable estimate of the hydroelastic response of mat-like VLFS in a certain range of incident angles of waves.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Mooring position technology:floating support platform engineering(Ⅱ))+1 种基金the Shanghai Sailing Program(Grant No.17YF1409700)the China Scholarship Council(Grant No.201806230206)
文摘This paper numerically and experimentally investigates the hydrodynamic interaction between two semi-submersible type VLFS modules in the frequency domain. Model tests were conducted to investigate the relationship between interactions and wave headings. Numerical studies were performed by solving the radiation-diffraction problem and were validated against the experimental results. Motion Response Amplitude Operators (RAOs) were obtained from numerical and experimental studies. The dependency of the hydrodynamic interaction effect on wave headings is clarified. The influence of different wave periods on the motion responses of two-module VLFS and wave elevations in the gap is studied. The results indicate that the hydrodynamic interactions of the two modules are directly related to the wave headings and the periods of the incident wave. The shielding effect plays an important role in short wave, and the influence decreases with the increase of the incident wavelength. The numerical results based on the diffraction-radiation code can give a relatively good estimation to the responses in short wave while for long wave, it would over-predict the response.
基金financially supported by the High-Tech Ship Research Projects sponsored by the Ministry of Industry and Information Technology of China(Grant No.[2019]357)China Postdoctoral Science Foundation(Grant No.2020M683755)。
文摘Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS can be simplified as an elastic foundation beam model or a multi-floating-module model connected by elastic hinges.According to equivalent displacement of the two models in static analysis,the problem of rotation stiffness of elastic hinges can be solved.Then,based on the potential flow theory,the dynamic responding analysis of multi-floatingmodule model under wave loads can be computed in ANSYS-AQWA software.By assembling the time domain analysis results of each module,the dynamic responses of the VLFS can be obtained.Validation of the method is conducted through a series of comparison calculations,which mainly includes a continuous structure and a three-part structure connected by hinges in regular waves.The results of this paper method show a satisfactory agreement with the experiment and calculation data given in relative references.
基金financially supported by the National Key R&D Program of China(Grant No.2019YFC1407700)the National Natural Science Foundation of China(Grant No.51779038)。
文摘The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water wave theory.Darcy’s law is adopted to represent energy dissipation in pores.It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop.In the analytic method,the eigenfunction expansion-matching method(EEMM)for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method.The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters,such as plate length,horizontal position,submerged depth and porosity.It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies,while solid plate has better damping effect at high frequencies.The optimal ratio of plate length to water depth is 0.25-0.375,and the optimal ratio of submerged depth to water depth is 0.09-0.181.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51490672,51579122 and51609109)the Natural Science Foundation of Jiangsu Province(Grant No.BK20160556)+1 种基金the University Natural Science Research Project of Jiangsu Province(Grant No.16kjb70003)the Key Lab Foundation for Advanced Manufacturing Technology of Jiangsu Province(Grant No.CJ1506)
文摘This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy’s law. The hybrid finite element-boundary element(FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves.Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.
文摘With the advantages on rapid construction,no limitation of extent,less influence on environment, the VLFS has been turned into the focus of coastal and offshore engineering studying.As the platform,VLFS was built as airport,huge oil house etc,and would play the role of ocean economics,politics and military.The restrictive condition of VLFS is strong wave by monsoon,seismic,serious bomb etc.The floating breakwater should be put forward to shelter VLFS.The analysis of wave condition including typhoon route,archipelago and water depth is performed in this paper.The advantage and disadvantage are compared between VLFS and the marine structure from land.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Grant No.2018473)the Shanghai Sailing Program(Grant No.17YF1409700)。
文摘A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport,is proposed.The telescopic piles can automatically plug in the soil to resist the environmental loads and pull out from the soil to evacuate or move on to the next operational sea.The feasibility demonstration of the conceptual design includes two parts:function verification and structure design.In the latter part of the conceptual design,a time-domain structural analysis is firstly conducted by using Abaqus software.The simulation results suggest that the preliminary structure scheme is not optimum due to the insufficient structure utilization,although both structure safety of the piles and positioning accuracy are guaranteed.To realize a cost reduction of construction and installation,a Genetic Algorithm-Finite Element Analysis(GA-FEA)method is employed to perform structural optimization.After optimization,31 percent of the weight of each pile is reduced and higher structure utilization is maintained.The difference of the self-weight and allowable buoyancy of a single module(SMOD)of a semisubmersible-type VLFS is much larger than the weight of the piles.Combined with the function verification in our previous work,the conceptual design of using the novel telescopic pile to position VLFS is demonstrated to be feasible.
基金financially supported by the National Key R&D Program of China (Grant Nos. 2019YFC1407702 and 2019YFC1407705)
文摘Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to determine the effects of mooring conditions on the hydroelastic response,mooring force,incident coefficient,reflection coefficient and energy dissipation coefficient.Eight mooring cables are symmetrically arranged on both sides of the model.The floating body model satisfies the similarity of stiffness and gravity,while the cable satisfies the similarity of elasticity and gravity.The results show that the effect of mooring type on mooring force is greater than that on hydroelastic response.Increasing the initial tension of the mooring cable will reduce the amplitude of the leeward of the VLFS model.The mooring angle of the mooring cable will affect the maximum mooring force and the initial tension of the mooring line will affect the wave period in which the maximum mooring force occurs.The transmission coefficient and wave energy dissipation coefficient will change regularly with different mooring types.These results may provide a reference to facilitate the mooring design of VLFS.
文摘A box-type solar cooker with an inclined surface, equipped with a concentration reflector to allow maximum energy to be collected, enabled cooking tests to be carried out in the rainy season. Different thermocouples were implanted on various places of the cooker. The temperature measurements from these sensors were taken every 10 minutes.<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The tests presented in this article relate to the preparation of eggs and rice. The absorber temperatures during the tests exceeded 100<span style="white-space:nowrap;">°</span>C. The cooking times were between 1</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">50</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">min and 2</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">20 min despite the numerous cloudy periods. The cooker made it possible to reach sufficient temperatures for healthy cooking of food. The results obtained for these first tests are satisfactory and very encouraging.</span></span></span>