This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
BACKGROUND Whether operation is superior to non-operation for humeral shaft fracture remains debatable.We hypothesized that operation could decrease the nonunion and reintervention rates and increase the functional ou...BACKGROUND Whether operation is superior to non-operation for humeral shaft fracture remains debatable.We hypothesized that operation could decrease the nonunion and reintervention rates and increase the functional outcomes.AIM To compare the clinical efficacy between operative and nonoperative approaches for humeral shaft fractures.METHODS We searched the PubMed,Web of Science,ScienceDirect,and Cochrane databases from 1990 to December 2023 for clinical trials and cohort studies comparing the effects of operative and conservative methods on humeral shaft fractures.Two investigators independently extracted data from the eligible studies,and the other two assessed the methodological quality of each study.The quality of the included studies was assessed using the Cochrane risk bias or Newcastle-Ottawa Scale.The nonunion,reintervention and the overall complications and functional scores were pooled and analyzed using Review Manager software(version 5.3).RESULTS A total of four randomized control trials and 13 cohort studies were included,with 1285 and 1346 patients in the operative and nonoperative groups,respectively.Patients in the operative group were treated with a plate or nail,whereas those in the conservative group were managed with splint or functional bracing.Four studies were assessed as having a high risk of bias,and the other 13 were of a low risk of bias according to the Newcastle-Ottawa Scale or Cochrane risk bias tool.The operative group had a significantly decreased rate of nonunion[odds ratio(OR)0.30;95%CI:0.23 to 0.40,reintervention(OR:0.33;95%CI:0.24 to 0.47),and overall complications(OR:0.62;95%CI:0.49 to 0.78)].The pooled effect of the Disabilities of Arm,Shoulder,and Hand score showed a significant difference at 3[mean difference(MD)-8.26;95%CI:-13.60 to-2.92],6(MD:-6.72;95%CI:-11.34 to-2.10),and 12 months(MD:-2.55;95%CI:-4.36 to-0.74).The pooled effect of Visual Analog Scale scores and the Constant-Murley score did not significantly differ between the two groups.CONCLUSION This systematic review and meta-analysis revealed a trend of rapid functional recovery and decreased rates of nonunion and reintervention after operation for humeral shaft fracture compared to conservative treatment.展开更多
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to ca...Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.展开更多
目的比较internal brace(IB)与带线锚钉通过改良Broström术治疗慢性踝关节不稳的临床疗效。方法回顾性分析2019年5月至2022年2月在桂林市人民医院本院关节骨科行手术治疗的42例慢性踝关节外侧不稳患者资料,根据距腓前韧带修补所用...目的比较internal brace(IB)与带线锚钉通过改良Broström术治疗慢性踝关节不稳的临床疗效。方法回顾性分析2019年5月至2022年2月在桂林市人民医院本院关节骨科行手术治疗的42例慢性踝关节外侧不稳患者资料,根据距腓前韧带修补所用材料的不同将患者分为IB组(19例)和带线锚钉组(23例)。比较两组患者一般资料、手术时间、并发症发生率、术后完全负重行走时间、术后恢复跑步的时间、美国足踝外科协会(American Orthopedic Foot and Ankle Society,AOFAS)踝-后足功能评分、视觉模拟评分法(visual analog scale,VAS)评分。结果所有患者术后均获得随访,随访时间12~18个月,平均(13.8±5.3)个月。两组患者基线资料差异无统计学意义(P>0.05);两组各有1例术口拆线后再出现渗液,换药后愈合;两组各有2例术口区域感觉障碍,除IB组有1例术后半年仍未完全恢复外,其余3例术后2~3个月恢复;IB组患者术后6周随访时AOFAS评分优于带线锚钉组,差异有统计学意义(t=2.239,P=0.025),但术后6周时VAS评分比较差异无统计学意义(t=0.308,P=0.760);末次随访时AOFAS评分和VAS评分比较,两组之间差异无统计学意义(t=0.045,P=0.965;t=0.203,P=0.840);IB组术后完全负重行走时间、术后恢复跑步的时间显著早于带线锚钉组,差异有统计学意义(t=26.566,P<0.01;t=4.838,P<0.01)。结论IB与带线锚钉通过改良Broström术开放治疗慢性踝关节不稳的临床疗效满意,且使用IB在早期康复和重返运动方面优于带线锚钉。展开更多
Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da...Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.展开更多
KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s des...KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s design and environment. In this study, the Finite Element Model of the KK-type tubular joint has been created, and analysis has been performed under static loading using the Static Structural analysis system of ANSYS 19.2 commercial software and structural mechanics module of COMSOL Multiphysics. The KK tubular model is analyzed under compressive load conditions, and the resulting stress, strain, and deformation values are tabulated in both graphical and tabular form. This study includes a comparison of the outcomes from both commercial software. The results highlight that maximum stress, strain, and deformation values decrease as joint thickness increases. This study holds significant relevance in advancing the understanding of tubular KK joints and their response to compressive loading. The insights derived from the analysis have the potential to contribute to the development of more robust and reliable tubular KK joints in various engineering and structural applications. .展开更多
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
基金Supported by Natural Science Foundation of Chongqing,China,No.CSTB2023NSCQ-MSX1080.
文摘BACKGROUND Whether operation is superior to non-operation for humeral shaft fracture remains debatable.We hypothesized that operation could decrease the nonunion and reintervention rates and increase the functional outcomes.AIM To compare the clinical efficacy between operative and nonoperative approaches for humeral shaft fractures.METHODS We searched the PubMed,Web of Science,ScienceDirect,and Cochrane databases from 1990 to December 2023 for clinical trials and cohort studies comparing the effects of operative and conservative methods on humeral shaft fractures.Two investigators independently extracted data from the eligible studies,and the other two assessed the methodological quality of each study.The quality of the included studies was assessed using the Cochrane risk bias or Newcastle-Ottawa Scale.The nonunion,reintervention and the overall complications and functional scores were pooled and analyzed using Review Manager software(version 5.3).RESULTS A total of four randomized control trials and 13 cohort studies were included,with 1285 and 1346 patients in the operative and nonoperative groups,respectively.Patients in the operative group were treated with a plate or nail,whereas those in the conservative group were managed with splint or functional bracing.Four studies were assessed as having a high risk of bias,and the other 13 were of a low risk of bias according to the Newcastle-Ottawa Scale or Cochrane risk bias tool.The operative group had a significantly decreased rate of nonunion[odds ratio(OR)0.30;95%CI:0.23 to 0.40,reintervention(OR:0.33;95%CI:0.24 to 0.47),and overall complications(OR:0.62;95%CI:0.49 to 0.78)].The pooled effect of the Disabilities of Arm,Shoulder,and Hand score showed a significant difference at 3[mean difference(MD)-8.26;95%CI:-13.60 to-2.92],6(MD:-6.72;95%CI:-11.34 to-2.10),and 12 months(MD:-2.55;95%CI:-4.36 to-0.74).The pooled effect of Visual Analog Scale scores and the Constant-Murley score did not significantly differ between the two groups.CONCLUSION This systematic review and meta-analysis revealed a trend of rapid functional recovery and decreased rates of nonunion and reintervention after operation for humeral shaft fracture compared to conservative treatment.
基金Science and Technology Fund of NWPU Under Grant No. M450211 Seed Fund of NWPU Under Grant No. Z200729
文摘Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
文摘目的比较internal brace(IB)与带线锚钉通过改良Broström术治疗慢性踝关节不稳的临床疗效。方法回顾性分析2019年5月至2022年2月在桂林市人民医院本院关节骨科行手术治疗的42例慢性踝关节外侧不稳患者资料,根据距腓前韧带修补所用材料的不同将患者分为IB组(19例)和带线锚钉组(23例)。比较两组患者一般资料、手术时间、并发症发生率、术后完全负重行走时间、术后恢复跑步的时间、美国足踝外科协会(American Orthopedic Foot and Ankle Society,AOFAS)踝-后足功能评分、视觉模拟评分法(visual analog scale,VAS)评分。结果所有患者术后均获得随访,随访时间12~18个月,平均(13.8±5.3)个月。两组患者基线资料差异无统计学意义(P>0.05);两组各有1例术口拆线后再出现渗液,换药后愈合;两组各有2例术口区域感觉障碍,除IB组有1例术后半年仍未完全恢复外,其余3例术后2~3个月恢复;IB组患者术后6周随访时AOFAS评分优于带线锚钉组,差异有统计学意义(t=2.239,P=0.025),但术后6周时VAS评分比较差异无统计学意义(t=0.308,P=0.760);末次随访时AOFAS评分和VAS评分比较,两组之间差异无统计学意义(t=0.045,P=0.965;t=0.203,P=0.840);IB组术后完全负重行走时间、术后恢复跑步的时间显著早于带线锚钉组,差异有统计学意义(t=26.566,P<0.01;t=4.838,P<0.01)。结论IB与带线锚钉通过改良Broström术开放治疗慢性踝关节不稳的临床疗效满意,且使用IB在早期康复和重返运动方面优于带线锚钉。
基金supported by the National Natural Science Foundation of China(Grant No.42307218)the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(Grant No.2022P08)the Natural Science Foundation of Zhejiang Province(Grant No.LTZ21E080001).
文摘Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.
文摘KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s design and environment. In this study, the Finite Element Model of the KK-type tubular joint has been created, and analysis has been performed under static loading using the Static Structural analysis system of ANSYS 19.2 commercial software and structural mechanics module of COMSOL Multiphysics. The KK tubular model is analyzed under compressive load conditions, and the resulting stress, strain, and deformation values are tabulated in both graphical and tabular form. This study includes a comparison of the outcomes from both commercial software. The results highlight that maximum stress, strain, and deformation values decrease as joint thickness increases. This study holds significant relevance in advancing the understanding of tubular KK joints and their response to compressive loading. The insights derived from the analysis have the potential to contribute to the development of more robust and reliable tubular KK joints in various engineering and structural applications. .