期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Optimization of design parameters for controlled rocking steel braced dual-frames
1
作者 Sobhan Ghasemi M.Firoozi Nezamabadi +1 位作者 Abdolreza S.Moghadam Mahmood Hosseini 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期1053-1068,共16页
A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensi... A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions. 展开更多
关键词 self-centering rocking steel braced frame design parameters OPTIMIZATION low damage
下载PDF
Shaking table test and numerical analysis of a 1:12 scale model of a special concentrically braced steel frame with pinned connections 被引量:7
2
作者 Yu Haifeng Zhang Wenyuan +1 位作者 Zhang Yaochun Sun Yusong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期51-63,共13页
This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical ... This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant. In order to investigate the seismic performance of this type of structure, several ground motion accelerations with different levels for seismic intensity Ⅷ, based on the Chinese Code for Seismic Design of Buildings, were selected to excite the model. The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity. In addition to the tests, numerical simulations were also conducted and the results showed good agreement with the test results. Thus, the numerical model is shown to be accurate and the beam element can be used to model this structural system. 展开更多
关键词 concentrically braced steel frame pinned connections shaking table test numerical analysis seismic performance
下载PDF
Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems 被引量:3
3
作者 Siavash Soroushian E. “Manos” Maragakis +3 位作者 Arash E. Zaghi Esmaeel Rahmanishamsi Ahmad M. Itani Gokhan Pekcan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第1期19-29,共11页
A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismi... A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated. 展开更多
关键词 seismic design steel braced frame building shake table simulation full scale experiment nonstructuralsystems
下载PDF
Topology optimization and seismic collapse assessment of shape memory alloy(SMA)-braced frames:Effectiveness of Fe-based SMAs
4
作者 Aydin HASSANZADEH Saber MORADI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第3期281-301,共21页
This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy(SMA)braces.Optimal SMA-braced frames(SMA-BFs)with either Fe-based SMA or NiTi braces are determined in a perform... This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy(SMA)braces.Optimal SMA-braced frames(SMA-BFs)with either Fe-based SMA or NiTi braces are determined in a performance-based seismic design context.The topology optimization is performed on 5-and 10-story SMA-BFs considering the placement,length,and cross-sectional area of SMA bracing members.Geometric,strength,and performance-based design constraints are considered in the optimization.The seismic response and collapse safety of topologically optimal SMA-BFs are assessed according to the FEMA P695 methodology.A comparative study on the optimal SMA-BFs is also presented in terms of total relative cost,collapse capacity,and peak and residual story drift.The results demonstrate that Fe-based SMA-BFs exhibit higher collapse capacity and more uniform distribution of lateral displacement over the frame height while being more cost-effective than NiTi braced frames.In addition to a lower unit price compared to NiTi,Fe-based SMAs reduce SMA material usage.In frames with Fe-based SMA braces,the SMA usage is reduced by up to 80%.The results highlight the need for using SMAs with larger recoverable strains. 展开更多
关键词 topology optimization shape memory alloy Fe-based SMA steel braced frames performance-based seismic design collapse assessment
原文传递
Probabilistic safety assessment of self-centering steel braced frame
5
作者 Navid RAHGOZAR Nima RAHGOZAR Abdolreza S. MOGHADAM 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第1期163-182,共20页
The main drawback of conventional braced frames is implicitly accepting structural damage under the design earthquake load, which leads to considerable economic losses. Controlled rocking self-centering system as a mo... The main drawback of conventional braced frames is implicitly accepting structural damage under the design earthquake load, which leads to considerable economic losses. Controlled rocking self-centering system as a modem low-damage system is capable of minimizing the drawbacks of conventional braced frames. This paper quantifies main limit states and investigates the seismic performance of self-centering braced frame using a Probabilistic Safety Assessment procedure. Margin of safety, confidence level, and mean annual frequency of the self-centering archetypes for their main limit states, including PT yield, fuse fracture, and global collapse, are established and are compared with their acceptance criteria. Considering incorporating aleatory examined. Results of the investigation indicate that the provide the adequate margin of safety against exceeding and epistemic uncertainties, the efficiency of the system is design of low- and mid-rise self-centering archetypes could the undesirable limit-states. 展开更多
关键词 self-centering steel braced frame mean annual frequency safety assessment confidence level margin of safety
原文传递
Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings
6
作者 Iman TABAEYE IZADI Abdolrasoul RANJBARAN 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第4期421-430,共10页
This study presents the investigation of the approach which was presented by Thaer M.Saeed Alrudaini to provide the alternate load path to redistribute residual loads and preventing from the potential progressive coll... This study presents the investigation of the approach which was presented by Thaer M.Saeed Alrudaini to provide the alternate load path to redistribute residual loads and preventing from the potential progressive collapse of RC buildings.It was proposed to transfer the residual loads upwards above the failed column of RC buildings by vertical cables hanged at the top to a hat steel braced frame seated on top of the building which in turn redistributes the residual loads to the adjacent columns.In this study a ten-storey regular structural building has been considered to investigate progressive collapse potential.Structural design is based on ACI 318-08 concrete building code for special RC frames and the nonlinear dynamic analysis is carried out using SAP2000 software,following UFC4-023-03 document.Nine independent failure scenarios are adopted in the investigation,including six external removal cases in different floors and three removal cases in the first floor.A new detail is proposed by using barrel and wedge to improve residual forces transfer to the cables after removal of the columns.Simulation results show that progressive collapse of building that resulted from potential failure of columns located in floors can be efficiently resisted by using this method. 展开更多
关键词 prevent progressive collapse alternate load path reinforced concrete buildings nonlinear dynamic retrofitting cable steel hat braced frame barrel and wedge
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部