With the increasing global demand for renewable energy,solar photovoltaic power generation technology has been widely applied in China and even globally.Especially in mountainous areas,complex terrain resources are cl...With the increasing global demand for renewable energy,solar photovoltaic power generation technology has been widely applied in China and even globally.Especially in mountainous areas,complex terrain resources are cleverly utilized in the construction of photovoltaic power stations,but this also brings severe challenges to the anti-corrosion of photovoltaic brackets.This paper focuses on the anti-corrosion technology of mountain photovoltaic brackets,and deeply explores the influence of natural factors such as mountain climate,sandstorms,and precipitation on the corrosion of photovoltaic brackets.The research results show that the key to improving anti-corrosion performance lies in the selection of bracket materials and optimization of coating processes.After comparing various anti-corrosion treatment methods such as hot-dip galvanizing,spray aluminum coating,and new anti-corrosion materials,it is found that nano coating technology exhibits excellent protective effects in corrosive environments.This study is of great significance for promoting the sustainable development of photovoltaic power generation,providing solid theoretical support and practical guidance for the anti-corrosion design of mountain photovoltaic power stations.展开更多
Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various die...Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning.展开更多
The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and...The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and is still prevalent today.It highlights hierarchy and spiritual connotations in the design of a building.This article explores the application of Bracket Set elements in modern architectural design.It analyzes the specific application strategies of this design element,highlighting its value in modern architecture.The goal is to provide modern architectural designers with multiple perspectives and strategies to fully utilize the advantages of Bracket Set elements in architectural design and enhance the artistic value of their work.展开更多
The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of bille...The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.展开更多
Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was f...Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was fabricated by shell mold casting.The finite element model and ProCAST software were utilized for simulating the filling and solidification processes of the casting;and the formation mechanism of the gas pore,and shrinkage porosity defects were analyzed.The results indicate that the gas pore and shrinkage porosity defects are formed due to air entrapment,insufficient feeding and non-sequential solidification.Subsequently,through changing the position of risers,adding a connecting channel between the risers,and setting blind risers at the U-shaped brackets,an optimized gating and feeding system was established to improve the quality of the casting.After optimization,the gas pore and shrinkage porosity defects of the leaf spring bracket casting are effectively eliminated.The experiment results with the optimized casting process are in good agreement with the numerical simulation,which verifies the validity of the finite element model in the shell mould casting.展开更多
It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-d...It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds.Thed we apply them to a truncated spectral model of the quasi-geostrophic flow on a cyclic β-plane.展开更多
For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracke...For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.展开更多
文摘With the increasing global demand for renewable energy,solar photovoltaic power generation technology has been widely applied in China and even globally.Especially in mountainous areas,complex terrain resources are cleverly utilized in the construction of photovoltaic power stations,but this also brings severe challenges to the anti-corrosion of photovoltaic brackets.This paper focuses on the anti-corrosion technology of mountain photovoltaic brackets,and deeply explores the influence of natural factors such as mountain climate,sandstorms,and precipitation on the corrosion of photovoltaic brackets.The research results show that the key to improving anti-corrosion performance lies in the selection of bracket materials and optimization of coating processes.After comparing various anti-corrosion treatment methods such as hot-dip galvanizing,spray aluminum coating,and new anti-corrosion materials,it is found that nano coating technology exhibits excellent protective effects in corrosive environments.This study is of great significance for promoting the sustainable development of photovoltaic power generation,providing solid theoretical support and practical guidance for the anti-corrosion design of mountain photovoltaic power stations.
文摘Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning.
文摘The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and is still prevalent today.It highlights hierarchy and spiritual connotations in the design of a building.This article explores the application of Bracket Set elements in modern architectural design.It analyzes the specific application strategies of this design element,highlighting its value in modern architecture.The goal is to provide modern architectural designers with multiple perspectives and strategies to fully utilize the advantages of Bracket Set elements in architectural design and enhance the artistic value of their work.
文摘The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.
基金financially supported by the Major Science and Technology Projects in Anhui Province (No. 18030901097)the Natural Science Foundation of Anhui Province (No.1908085QE197)the Fundamental Research Funds for the Central Universities (JZ2018HGBZ0133, JZ2019HGTA0043)
文摘Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was fabricated by shell mold casting.The finite element model and ProCAST software were utilized for simulating the filling and solidification processes of the casting;and the formation mechanism of the gas pore,and shrinkage porosity defects were analyzed.The results indicate that the gas pore and shrinkage porosity defects are formed due to air entrapment,insufficient feeding and non-sequential solidification.Subsequently,through changing the position of risers,adding a connecting channel between the risers,and setting blind risers at the U-shaped brackets,an optimized gating and feeding system was established to improve the quality of the casting.After optimization,the gas pore and shrinkage porosity defects of the leaf spring bracket casting are effectively eliminated.The experiment results with the optimized casting process are in good agreement with the numerical simulation,which verifies the validity of the finite element model in the shell mould casting.
文摘It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds.Thed we apply them to a truncated spectral model of the quasi-geostrophic flow on a cyclic β-plane.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Project No.[2016] 546)+1 种基金the Shanghai Sailing Program(Grant No.17YF1409700)the Open Foundation of State Key Laboratory of Ocean Engineering(Grant No.1716)
文摘For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.