Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy ...Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).展开更多
For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the ...For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the peak reflection coefficient is obtained,has been observed in both physical experiments and direct numerical simulations to be downshifted from the well-known theoretical prediction.It has long been speculated that the downshift may be attributed to higher-order rippled bottom and free-surface boundary effects,but the intrinsic mechanism remains unclear.By a regular perturbation analysis,we derive the theoretical solution of frequency downshift due to third-order nonlinear effects of both bottom and free-surface boundaries.It is found that the bottom nonlinearity plays the dominant role in frequency downshift while the free-surface nonlinearity actually causes frequency upshift.The frequency downshift/upshift has a quadratic dependence in the bottom/free-surface steepness.Polychromatic bottom leads to a larger frequency downshift relative to the monochromatic bottom.In addition,direct numerical simulations based on the high-order spectral method are conducted to validate the present theory.The theoretical solution of frequency downshift compares well with the numerical simulations and available experimental data.展开更多
Responses of the very large floating Structures(VLFS)can be mitigated by implementing oscillating water columns(OWCs).This paper explores the fundamental mechanism of present wave interactions with both structures and...Responses of the very large floating Structures(VLFS)can be mitigated by implementing oscillating water columns(OWCs).This paper explores the fundamental mechanism of present wave interactions with both structures and examines the hydrodynamic performance of VLFS equipped with OWCs(VLFS-OWCs).Under the linear potential flow theory framework,the semi-analytical model of wave interaction with VLFS-OWCs is developed using the eigenfunction matching method.The semi-analytical model is verified using the Haskind relationship and wave energy conservation law.Results show that the system with dual-chamber OWCs has a wider frequency bandwidth in wave power extraction and hydroelastic response mitigation of VLFS.It is worth noting that the presence of Bragg resonance can be trigged due to wave interaction with the chamber walls and the VLFS,which is not beneficial for the wave power extraction performance and the protection of VLFS.展开更多
UHF surface velocities radar is developed based on the successful ocean state measuring and analyzing radar system. The design method for UHF radar system is presented. It is designed to operate at UHF channel, and th...UHF surface velocities radar is developed based on the successful ocean state measuring and analyzing radar system. The design method for UHF radar system is presented. It is designed to operate at UHF channel, and the transmit power is under 5W. Maximum range of field test over fresh water can be a kilometer. The field tests at Tangsun River and at Majiatan and Gaobazhou proved that USVR System can be used successfully.展开更多
This paper presents an analytical solution for the problem of the long wave reflection by a series of artificial bars with parabolic configuration in terms of the associated Legendre functions. It is shown that both t...This paper presents an analytical solution for the problem of the long wave reflection by a series of artificial bars with parabolic configuration in terms of the associated Legendre functions. It is shown that both the reflection and transmission coefficients depend solely upon the number of bars, the dimensionless bar height, the dimensionless bar width and the dimensionless bar distance. Particularly, under the Bragg resonance condition, i.e., the distance between two adjacent bars is about half of the wavelength of the normal incident waves, the analytical solution for the peak Bragg resonant reflection is obtained, which reveals that the peak Bragg resonance depends upon the number of bars, the dimensionless bar height and the dimensionless bar width. Based on this solution, the optimization of the parabolic bars is made to obtain the maximum Bragg resonance and a group of optimal curves, which may be very useful in the design of Bragg breakwaters with parabolic bars.展开更多
A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third F...A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.展开更多
Oblique wave interaction with a two-layer breakwater consisting of perforated front and back wall in the presence of bottom undulations is analyzed.Wave characteristics are studied in the framework of small-amplitude ...Oblique wave interaction with a two-layer breakwater consisting of perforated front and back wall in the presence of bottom undulations is analyzed.Wave characteristics are studied in the framework of small-amplitude wave theory,and Darcy’s law is used for flow past porous structures.The varying bottom topography spanned over a finite interval connected by two semi-infinite intervals of uniform water depths.Eigenfunction expansion method is used to handle the solution in the regions of uniform bottom and a modified mild-slope equation along with jump conditions is employed for varying bottom topography.Reflection,transmission,and wave energy dissipation coefficients are obtained numerically by applying the matrix method to understand the effects of several physical quantities such as wavenumber,porosity,and angle of incidence.The transmission coefficient reduces significantly and the wave energy dissipation is high for the present model.Also,Bragg scattering is analyzed in the presence of step-type rippled bottom and presented in this paper.展开更多
基金financially supported by the National Natural Science Fundation of China(Grant Nos.51579091,51379071,and 51137002)the Qing Lan Project of Jiangsu Province,the Basic Research Fund from the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University(Grant Nos.20145027512 and 20145028412)+1 种基金the Short-term Research Visits Project supported by Disaster Prevention Research Institute of Kyoto University(Grant No.27S-02)the FundZamental Research Funds for the Central Universities of Hohai University(Grant No.2016B05214)
文摘Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).
基金financially supported by the National Natural Science Foundation of China (Grant Nos. U1706230 and51379071)the Key Project of NSFC-Shandong Joint Research Funding POW3C (Grant No. U1906230)the National Science Fund for Distinguished Young Scholars (Grant No. 51425901)
文摘For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the peak reflection coefficient is obtained,has been observed in both physical experiments and direct numerical simulations to be downshifted from the well-known theoretical prediction.It has long been speculated that the downshift may be attributed to higher-order rippled bottom and free-surface boundary effects,but the intrinsic mechanism remains unclear.By a regular perturbation analysis,we derive the theoretical solution of frequency downshift due to third-order nonlinear effects of both bottom and free-surface boundaries.It is found that the bottom nonlinearity plays the dominant role in frequency downshift while the free-surface nonlinearity actually causes frequency upshift.The frequency downshift/upshift has a quadratic dependence in the bottom/free-surface steepness.Polychromatic bottom leads to a larger frequency downshift relative to the monochromatic bottom.In addition,direct numerical simulations based on the high-order spectral method are conducted to validate the present theory.The theoretical solution of frequency downshift compares well with the numerical simulations and available experimental data.
基金The Key Program for International Scientific and Technological Innovation Cooperation between Governments(Grant No.2019YFE0102500)National Natural Science Foundation of China(Grant No.52001086)China Postdoctoral Science Foundation Funded Project(Grant No.2019M661257).
文摘Responses of the very large floating Structures(VLFS)can be mitigated by implementing oscillating water columns(OWCs).This paper explores the fundamental mechanism of present wave interactions with both structures and examines the hydrodynamic performance of VLFS equipped with OWCs(VLFS-OWCs).Under the linear potential flow theory framework,the semi-analytical model of wave interaction with VLFS-OWCs is developed using the eigenfunction matching method.The semi-analytical model is verified using the Haskind relationship and wave energy conservation law.Results show that the system with dual-chamber OWCs has a wider frequency bandwidth in wave power extraction and hydroelastic response mitigation of VLFS.It is worth noting that the presence of Bragg resonance can be trigged due to wave interaction with the chamber walls and the VLFS,which is not beneficial for the wave power extraction performance and the protection of VLFS.
文摘UHF surface velocities radar is developed based on the successful ocean state measuring and analyzing radar system. The design method for UHF radar system is presented. It is designed to operate at UHF channel, and the transmit power is under 5W. Maximum range of field test over fresh water can be a kilometer. The field tests at Tangsun River and at Majiatan and Gaobazhou proved that USVR System can be used successfully.
基金supported by the Natural Science Foundation of China(Grant No.51369008)the Natural Science Foundation of Guangxi(Grant No.2014GXNSFAA118322)the Innovation Project of Guangxi Graduate Education(Grant Nos.JGY2014052,YCSZ2013059,gxun-chx2013087)
文摘This paper presents an analytical solution for the problem of the long wave reflection by a series of artificial bars with parabolic configuration in terms of the associated Legendre functions. It is shown that both the reflection and transmission coefficients depend solely upon the number of bars, the dimensionless bar height, the dimensionless bar width and the dimensionless bar distance. Particularly, under the Bragg resonance condition, i.e., the distance between two adjacent bars is about half of the wavelength of the normal incident waves, the analytical solution for the peak Bragg resonant reflection is obtained, which reveals that the peak Bragg resonance depends upon the number of bars, the dimensionless bar height and the dimensionless bar width. Based on this solution, the optimization of the parabolic bars is made to obtain the maximum Bragg resonance and a group of optimal curves, which may be very useful in the design of Bragg breakwaters with parabolic bars.
基金supported by the National Natural Science Foundation of China(No.60777020)the Hubei Provincial Natural Science Foundation of China(No.2008CDB317)the Innovation Project of Hubei Provincial Department of Education of China(No.2012344/104892013043)
文摘A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.
基金Saista Tabssum acknowledges the Institute post-doctoral fellowship grant from Indian Institute of Technology,Bombay.
文摘Oblique wave interaction with a two-layer breakwater consisting of perforated front and back wall in the presence of bottom undulations is analyzed.Wave characteristics are studied in the framework of small-amplitude wave theory,and Darcy’s law is used for flow past porous structures.The varying bottom topography spanned over a finite interval connected by two semi-infinite intervals of uniform water depths.Eigenfunction expansion method is used to handle the solution in the regions of uniform bottom and a modified mild-slope equation along with jump conditions is employed for varying bottom topography.Reflection,transmission,and wave energy dissipation coefficients are obtained numerically by applying the matrix method to understand the effects of several physical quantities such as wavenumber,porosity,and angle of incidence.The transmission coefficient reduces significantly and the wave energy dissipation is high for the present model.Also,Bragg scattering is analyzed in the presence of step-type rippled bottom and presented in this paper.