For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ...For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.展开更多
The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap...The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap, oil reservoir, and edge water. The actual production site results show that the permeability difference of multi-layer sand bodies has a serious impact on the development effect. This article establishes a typical reservoir model numerical model based on the total recovery degree of the reservoir and the recovery degree of each layer, and analyzes the impact of permeability gradient. As the permeability gradient increases, the total recovery degree of all four well patterns decreases, and the total recovery degree gradually decreases. The recovery degree of low permeability layers gradually decreases, and the recovery degree of high permeability layers gradually increases. As the permeability gradient increases, the degree of recovery gradually decreases under different water contents. As the permeability gradient increases, the reduction rate of remaining oil saturation in low permeability layers is slower, while the reduction rate of remaining oil saturation in high permeability layers was faster. By analyzing the impact of permeability gradient on the development effect of oil fields, we could further deepen our understanding of gas cap edge water reservoirs and guide the development of this type of oil field.展开更多
Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origi...Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origin,accumulation evolution,accumulation pattern and formation conditions of large lithologic gas reservoirs have been investigated.Through comprehensive analyses of natural gas composition,carbon and hydrogen isotopic compositions,fluid inclusions,reservoir bitumen,and geological conditions such as lithofacies paleogeography and beach body characterization,it is concluded that:(1)The natural gas in the Sinian-Cambrian of the north slope area is mainly oil cracking gas,and different contribution ratios of multiple sets of source rocks lead to different geochemical characteristics of natural gas in different reservoirs.(2)Although the both Sinian and Cambrian gas reservoirs in this area are lithologic gas reservoirs under monocline background,the former has normal-pressure and the latter has high-pressure.There are three types of source-reservoir-caprock combinations:single source with lower generation and upper reservoir,double sources with lower generation and upper reservoir or with side source and lateral reservoir,double sources with lower generation and upper reservoir or with upper generation and lower reservoir.The Permian-Triassic is the main generation period of oil,Early-Middle Jurassic is the main generation period of oil cracking gas and wet gas,and Late Jurassic-Cretaceous is the main generation period of dry gas.(3)The Sinian-Cambrian system of the north slope area has two favorable conditions for formation of large lithologic gas reservoirs,one is that the large scale beach facies reservoirs are located in the range of ancient oil reservoirs or near the source rocks,which is conducive to the"in-situ"large-scale accumulation of cracked gas in the paleo-oil reservoirs,the other is that the large scale mound-beach complex reservoirs and sealing layers of inter beach tight zones match effectively to form large lithologic traps under the slope background.The research results confirm that the north slope area has large multi-layer lithologic gas reservoirs with more than one trillion cubic meters of natural gas resources and great exploration potential.展开更多
Based on core,logging,lab test and seismic data,sedimentary characteristics and pattern of marine hyperpycnal flow,the distribution rules of hyperpycnal flow reservoir,prediction method of favorable hyperpycnal flow r...Based on core,logging,lab test and seismic data,sedimentary characteristics and pattern of marine hyperpycnal flow,the distribution rules of hyperpycnal flow reservoir,prediction method of favorable hyperpycnal flow reservoir zones,hydrocarbon accumulation model in hyperpycnal flow reservoir in D block of Bay of Bengal were investigated,and the favorable exploration zone and well sites were predicted.Pliocene in D block has typical hyperpycnal flow sediment,which is a set of fine-medium sandstone held between thick layers of marine mudstone and features a series of reverse grading unit and normal grading unit pairs.The hyperpycnal flow sediment appears as heavily jagged box shape,bell shape and tongue shape facies on log curves with linear gradient,and corresponds to multiple phases of deep channels on the seismic section and high sinuous channel on stratal slices.The sedimentary bodies formed by a single phase hyperpycnal flow which include five types of microfacies,namely,supply channel(valley),channel complex,branch channel,levee and sheet sand.The hyperpycnal flow sediments appear in multiple branches,multiple generations and stages in space,forming high-quality reservoirs in strips on the plane and superposition vertically,with fairly good physical properties.The channel complex sandstone,with large thickness,coarse particle size and good physical properties,is the most favorable exploration facies.Based on the guidance of the sedimentary model,distribution of the channel complex microfacies was delineated in detail by seismic reflection structure analysis,spectrum waveform characteristic analysis,slice and attribute fusion,and combined with the structural feature analysis,the favorable drilling zone was sorted out,effectively guiding the exploration deployment of the block.展开更多
Considering the problems in the discrimination of fracture penetration and the evaluation of fracturing performance in the stimulation of thin sand-mud interbedded reservoirs in the eighth member of Shihezi Formation ...Considering the problems in the discrimination of fracture penetration and the evaluation of fracturing performance in the stimulation of thin sand-mud interbedded reservoirs in the eighth member of Shihezi Formation of Permian(He-8 Member)in the Sulige gas field,a geomechanical model of thin sand-mud interbedded reservoirs considering interlayer heterogeneity was established.The experiment of hydraulic fracture penetration was performed to reveal the mechanism of initiation–extension–interaction–penetration of hydraulic fractures in the thin sand-mud interbedded reservoirs.The unconventional fracture model was used to clarify the vertical initiation and extension characteristics of fractures in thin interbedded reservoirs through numerical simulation.The fracture penetration discrimination criterion and the fracturing performance evaluation method were developed.The results show that the interlayer stress difference is the main geological factor that directly affects the fracture morphology during hydraulic fracturing.When the interlayer stress difference coefficient is less than 0.4 in the Sulige gas field,the fractures can penetrate the barrier and extend in the target sandstone layer.When the interlayer stress difference coefficient is not less than 0.4 and less than 0.45,the factures can penetrate the barrier but cannot extend in the target sandstone layers.When the interlayer stress difference coefficient is greater than 0.45,the fractures only extend in the perforated reservoir,but not penetrate the layers.Increasing the viscosity and pump rates of the fracturing fluid can compensate for the energy loss and break through the barrier limit.The injection of high viscosity(50–100 mPa·s)fracturing fluid at high pump rates(12–18 m~3/min)is conducive to fracture penetration in the thin sand-mud interbedded reservoirs in the Sulige gas field.展开更多
Based on characteristics and trap types of gas reservoirs in large and medium gas fields in China, 4 gas reservoir models have been established; (i)structural trap gas reservoir model I , formed earlier than or simult...Based on characteristics and trap types of gas reservoirs in large and medium gas fields in China, 4 gas reservoir models have been established; (i)structural trap gas reservoir model I , formed earlier than or simultaneously with generating of gases; (ii) structural trap gas reservoir model II , formed later than generating of gases; ( iii )fossil weathered residuum gas reservoir model; and (iv) mud diapir abnormal temperature and pressure gas reservoir model. Distribution patterns of large-medium gas fields are described with the concept of "sealed compartment". It is concluded that the inner-compartment area, marginal area of the compartment and the areas between two overlapped sealed compartments are the most favourable areas for discovering large-medium gas fields.展开更多
In the process of unconventional natural gas development practice,the"extreme utilization"concept that focuses on"continuously breaking through the limit of development technology"is gradually form...In the process of unconventional natural gas development practice,the"extreme utilization"concept that focuses on"continuously breaking through the limit of development technology"is gradually formed,and supports the scale benefit exploration of unconventional gas in China.On this basis,the development theory of"extreme utilization"is proposed,its theoretical connotation together with development technologies of unconventional natural gas are clarified.The theoretical connotation is that,aiming at"extreme gas reservoirs","extreme techniques"are utilized to build subsurface connected bodies,expand the discharge area,and enlarge the production range,to obtain the maximum single-well production,extreme recovery,and eventually achieve the"extreme effect"of production.The series of development technologies include micro/nano-scale reservoir evaluation,"sweet spot"prediction,unconventional percolation theory and production capacity evaluation,optimization of grid well pattern,optimal-fast drilling and volume fracturing,and working regulation optimization and"integrated"organizing system.The"extreme utilization"development theory has been successfully applied in the development of unconventional gas reservoirs such as Sulige tight gas,South Sichuan shale gas,and Qinshui coalbed methane.Such practices demonstrate that,the"extreme utilization"development theory has effectively promoted the development of unconventional gas industry in China,and can provide theoretical guidance for effective development of other potential unconventional and difficult-to-recovery resources.展开更多
Regarding the enormous demands of numerous industries to fossil fuels,it is essential to select the proper enhanced oil recovery approaches for vertical and horizontal wells to supply the demands with the optimum expe...Regarding the enormous demands of numerous industries to fossil fuels,it is essential to select the proper enhanced oil recovery approaches for vertical and horizontal wells to supply the demands with the optimum expenditure.Water and gas injectivity as the secondary enhanced oil recovery techniques would be preferentially considered regarding their low costs of performances rather than chemical recovery and thermal techniques.Injected gas tends to push oil through pores or cracks in the matrix block and lead them to the production well.Therefore,injection of gas may significantly increase the recovery factor in these reservoirs.In this research,different injection scenarios in a fractured carbonate reservoir in the west of Iran are being simulated by the PVT modules of Eclipse software.The purpose of this research is to analyze the possibility of gradually increasing the extent of recovery by injecting carbon dioxide,methane,and water,and different injectivity patterns are considered in this research.The selection of injectivity patterns is severely based on the highest recycling rate of gas injection on different injection scenarios,and the injectivity scenarios were being compared with the natural depletion scenario.Consequently,Co2 injection(about 60%)had the highest oil recovery factor and CH4 and TB(about 54%and 53%)injectivity scenarios had the second and third highest rate of the oil recovery factor.展开更多
文摘For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.
文摘The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap, oil reservoir, and edge water. The actual production site results show that the permeability difference of multi-layer sand bodies has a serious impact on the development effect. This article establishes a typical reservoir model numerical model based on the total recovery degree of the reservoir and the recovery degree of each layer, and analyzes the impact of permeability gradient. As the permeability gradient increases, the total recovery degree of all four well patterns decreases, and the total recovery degree gradually decreases. The recovery degree of low permeability layers gradually decreases, and the recovery degree of high permeability layers gradually increases. As the permeability gradient increases, the degree of recovery gradually decreases under different water contents. As the permeability gradient increases, the reduction rate of remaining oil saturation in low permeability layers is slower, while the reduction rate of remaining oil saturation in high permeability layers was faster. By analyzing the impact of permeability gradient on the development effect of oil fields, we could further deepen our understanding of gas cap edge water reservoirs and guide the development of this type of oil field.
基金Chinese Academy of Sciences Strategic Pilot Science and Technology Project(Class A)(XDA14010403)National Science and Technology Major Project(2016ZX05007)PetroChina Science and Technology Project(2021DJ0604,kt2020-01-03)。
文摘Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origin,accumulation evolution,accumulation pattern and formation conditions of large lithologic gas reservoirs have been investigated.Through comprehensive analyses of natural gas composition,carbon and hydrogen isotopic compositions,fluid inclusions,reservoir bitumen,and geological conditions such as lithofacies paleogeography and beach body characterization,it is concluded that:(1)The natural gas in the Sinian-Cambrian of the north slope area is mainly oil cracking gas,and different contribution ratios of multiple sets of source rocks lead to different geochemical characteristics of natural gas in different reservoirs.(2)Although the both Sinian and Cambrian gas reservoirs in this area are lithologic gas reservoirs under monocline background,the former has normal-pressure and the latter has high-pressure.There are three types of source-reservoir-caprock combinations:single source with lower generation and upper reservoir,double sources with lower generation and upper reservoir or with side source and lateral reservoir,double sources with lower generation and upper reservoir or with upper generation and lower reservoir.The Permian-Triassic is the main generation period of oil,Early-Middle Jurassic is the main generation period of oil cracking gas and wet gas,and Late Jurassic-Cretaceous is the main generation period of dry gas.(3)The Sinian-Cambrian system of the north slope area has two favorable conditions for formation of large lithologic gas reservoirs,one is that the large scale beach facies reservoirs are located in the range of ancient oil reservoirs or near the source rocks,which is conducive to the"in-situ"large-scale accumulation of cracked gas in the paleo-oil reservoirs,the other is that the large scale mound-beach complex reservoirs and sealing layers of inter beach tight zones match effectively to form large lithologic traps under the slope background.The research results confirm that the north slope area has large multi-layer lithologic gas reservoirs with more than one trillion cubic meters of natural gas resources and great exploration potential.
基金Supported by the CNPC Overseas Science and Technology Project(CNODC/CAL/KJZX/2015-016)
文摘Based on core,logging,lab test and seismic data,sedimentary characteristics and pattern of marine hyperpycnal flow,the distribution rules of hyperpycnal flow reservoir,prediction method of favorable hyperpycnal flow reservoir zones,hydrocarbon accumulation model in hyperpycnal flow reservoir in D block of Bay of Bengal were investigated,and the favorable exploration zone and well sites were predicted.Pliocene in D block has typical hyperpycnal flow sediment,which is a set of fine-medium sandstone held between thick layers of marine mudstone and features a series of reverse grading unit and normal grading unit pairs.The hyperpycnal flow sediment appears as heavily jagged box shape,bell shape and tongue shape facies on log curves with linear gradient,and corresponds to multiple phases of deep channels on the seismic section and high sinuous channel on stratal slices.The sedimentary bodies formed by a single phase hyperpycnal flow which include five types of microfacies,namely,supply channel(valley),channel complex,branch channel,levee and sheet sand.The hyperpycnal flow sediments appear in multiple branches,multiple generations and stages in space,forming high-quality reservoirs in strips on the plane and superposition vertically,with fairly good physical properties.The channel complex sandstone,with large thickness,coarse particle size and good physical properties,is the most favorable exploration facies.Based on the guidance of the sedimentary model,distribution of the channel complex microfacies was delineated in detail by seismic reflection structure analysis,spectrum waveform characteristic analysis,slice and attribute fusion,and combined with the structural feature analysis,the favorable drilling zone was sorted out,effectively guiding the exploration deployment of the block.
基金Supported by the National Key Research and Development Program of China(2022YFE0129800)CNPC and China University of Petroleum(Beijing)Strategic Cooperation Science and Technology Special Project(ZLZX2020-02)。
文摘Considering the problems in the discrimination of fracture penetration and the evaluation of fracturing performance in the stimulation of thin sand-mud interbedded reservoirs in the eighth member of Shihezi Formation of Permian(He-8 Member)in the Sulige gas field,a geomechanical model of thin sand-mud interbedded reservoirs considering interlayer heterogeneity was established.The experiment of hydraulic fracture penetration was performed to reveal the mechanism of initiation–extension–interaction–penetration of hydraulic fractures in the thin sand-mud interbedded reservoirs.The unconventional fracture model was used to clarify the vertical initiation and extension characteristics of fractures in thin interbedded reservoirs through numerical simulation.The fracture penetration discrimination criterion and the fracturing performance evaluation method were developed.The results show that the interlayer stress difference is the main geological factor that directly affects the fracture morphology during hydraulic fracturing.When the interlayer stress difference coefficient is less than 0.4 in the Sulige gas field,the fractures can penetrate the barrier and extend in the target sandstone layer.When the interlayer stress difference coefficient is not less than 0.4 and less than 0.45,the factures can penetrate the barrier but cannot extend in the target sandstone layers.When the interlayer stress difference coefficient is greater than 0.45,the fractures only extend in the perforated reservoir,but not penetrate the layers.Increasing the viscosity and pump rates of the fracturing fluid can compensate for the energy loss and break through the barrier limit.The injection of high viscosity(50–100 mPa·s)fracturing fluid at high pump rates(12–18 m~3/min)is conducive to fracture penetration in the thin sand-mud interbedded reservoirs in the Sulige gas field.
基金Project supported by the"85-102" Chinese National Key Science and Technology Project
文摘Based on characteristics and trap types of gas reservoirs in large and medium gas fields in China, 4 gas reservoir models have been established; (i)structural trap gas reservoir model I , formed earlier than or simultaneously with generating of gases; (ii) structural trap gas reservoir model II , formed later than generating of gases; ( iii )fossil weathered residuum gas reservoir model; and (iv) mud diapir abnormal temperature and pressure gas reservoir model. Distribution patterns of large-medium gas fields are described with the concept of "sealed compartment". It is concluded that the inner-compartment area, marginal area of the compartment and the areas between two overlapped sealed compartments are the most favourable areas for discovering large-medium gas fields.
基金Supported by the China National Science and Technology Major Project(2017ZX05035,2016ZX05037)。
文摘In the process of unconventional natural gas development practice,the"extreme utilization"concept that focuses on"continuously breaking through the limit of development technology"is gradually formed,and supports the scale benefit exploration of unconventional gas in China.On this basis,the development theory of"extreme utilization"is proposed,its theoretical connotation together with development technologies of unconventional natural gas are clarified.The theoretical connotation is that,aiming at"extreme gas reservoirs","extreme techniques"are utilized to build subsurface connected bodies,expand the discharge area,and enlarge the production range,to obtain the maximum single-well production,extreme recovery,and eventually achieve the"extreme effect"of production.The series of development technologies include micro/nano-scale reservoir evaluation,"sweet spot"prediction,unconventional percolation theory and production capacity evaluation,optimization of grid well pattern,optimal-fast drilling and volume fracturing,and working regulation optimization and"integrated"organizing system.The"extreme utilization"development theory has been successfully applied in the development of unconventional gas reservoirs such as Sulige tight gas,South Sichuan shale gas,and Qinshui coalbed methane.Such practices demonstrate that,the"extreme utilization"development theory has effectively promoted the development of unconventional gas industry in China,and can provide theoretical guidance for effective development of other potential unconventional and difficult-to-recovery resources.
文摘Regarding the enormous demands of numerous industries to fossil fuels,it is essential to select the proper enhanced oil recovery approaches for vertical and horizontal wells to supply the demands with the optimum expenditure.Water and gas injectivity as the secondary enhanced oil recovery techniques would be preferentially considered regarding their low costs of performances rather than chemical recovery and thermal techniques.Injected gas tends to push oil through pores or cracks in the matrix block and lead them to the production well.Therefore,injection of gas may significantly increase the recovery factor in these reservoirs.In this research,different injection scenarios in a fractured carbonate reservoir in the west of Iran are being simulated by the PVT modules of Eclipse software.The purpose of this research is to analyze the possibility of gradually increasing the extent of recovery by injecting carbon dioxide,methane,and water,and different injectivity patterns are considered in this research.The selection of injectivity patterns is severely based on the highest recycling rate of gas injection on different injection scenarios,and the injectivity scenarios were being compared with the natural depletion scenario.Consequently,Co2 injection(about 60%)had the highest oil recovery factor and CH4 and TB(about 54%and 53%)injectivity scenarios had the second and third highest rate of the oil recovery factor.