Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6...Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.展开更多
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r...We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.展开更多
We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repet...We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.展开更多
Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on...Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials. In this paper, we propose a simple yet effective approach, named common spatial pattern ensemble (CSPE) classifier, to improve CSP performance. Through division of recording channels, multiple CSP filters are constructed. By projection, log-operation, and subtraction on the original signal, an ensemble classifier, majority voting, is achieved and outlier contaminations are alleviated. Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%.展开更多
In this paper, we proposed a new concept: depth of drowsiness, which can more precisely describe the drowsiness than existing binary description. A set of effective markers for drowsiness: normalized band norm was suc...In this paper, we proposed a new concept: depth of drowsiness, which can more precisely describe the drowsiness than existing binary description. A set of effective markers for drowsiness: normalized band norm was successfully developed. These markers are invariant from voltage amplitude of brain waves, eliminating the need for calibrating the voltage output of the brain-computer interface devices. A new polling algorithm was designed and implemented for computing the depth of drowsiness. The time cost of data acquisition and processing for each estimate is about one second, which is well suited for real-time applications. Test results with a portable brain-computer interface device show that the depth of drowsiness computed by the method in this paper is generally invariant from ages of test subjects and sensor channels (P3 and C4). The comparison between experiment and computing results indicate that the new method is noticeably better than one of the recent methods in terms of accuracy for predicting the drowsiness.展开更多
Abstract-A brain-computer interface (BCI) real- time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments. A key problem to be solved for pra...Abstract-A brain-computer interface (BCI) real- time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments. A key problem to be solved for practical applications is real-time data collection and processing. In this paper, a real-time BCI system is implemented on computer with electroencephalogram amplifier. In our implementation, the on-line voting method is adopted for feedback control strategy, and the voting results are used to control the cursor horizontal movement. Three subjects take part in the experiment. The results indicate that the best accuracy is 90%.展开更多
The present study utilized motor imaginary-based brain-computer interface technology combined with rehabilitation training in 20 stroke patients. Results from the Berg Balance Scale and the Holden Walking Classificati...The present study utilized motor imaginary-based brain-computer interface technology combined with rehabilitation training in 20 stroke patients. Results from the Berg Balance Scale and the Holden Walking Classification were significantly greater at 4 weeks after treatment (P 〈 0.01), which suggested that motor imaginary-based brain-computer interface technology improved balance and walking in stroke patients.展开更多
Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discr...Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discriminant analysis with probabilistic output (PBLDA). A comparative evaluation of these two methods is conducted. The results shows that: 1) probabilistie information can improve the performance of BCI for subjects with high kappa coefficient, and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters.展开更多
R. Penrose and S. Hameroff have proposed an idea that the brain can attain high efficient quantum computation by functioning of microtubular structure of neurons in the cytoskelton of biological cells, including neuro...R. Penrose and S. Hameroff have proposed an idea that the brain can attain high efficient quantum computation by functioning of microtubular structure of neurons in the cytoskelton of biological cells, including neurons of the brain. But Tegmark estimated the duration of coherence of a quantum state in a warm wet brain to be on the order of 10>–13 </supseconds, which is far smaller than the one tenth of a second associated with consciousness. Contrary to his calculation, it can be shown that the microtubule in a biological brain can perform computation satisfying the time scale required for quantum computation to achieve large quantum bits calculation compared with the conventional silicon processors even at the room temperature from the assumption that tunneling photons are superluminal particles called tachyons. According to the non-local property of tachyons, it is considered that the tachyon field created inside the brain has the capability to exert an influence around the space outside the brain and it functions as a macroscopic quantum dynamical system to meditate the long-range physical correlations with the surrounding world. From standpoint of the brain model based on superluminal tunneling photons, the authors theoretically searched for the possibility to realize the brain-computer interface that allows paralyzed patient to operate computers by their thoughts and they obtained the positive result for its realization from the experiments conducted by using the prototype of a brain-computer interface system.展开更多
The tactile P300 brain-computer interface( BCI) is related to the somatosensory perception and response of the human brain,and is different from visual or audio BCIs. Recently,several studies focused on the tactile st...The tactile P300 brain-computer interface( BCI) is related to the somatosensory perception and response of the human brain,and is different from visual or audio BCIs. Recently,several studies focused on the tactile stimuli delivered to different parts of the human body. Most of these stimuli were symmetrically bilateral.Only a fewstudies explored the influence of tactile stimuli laterality.In the current study,we extensively tested the performance of a vibrotactile BCI system using ipsilateral stimuli and bilateral stimuli.Two vibrotactile P300-based paradigms were tested. The target stimuli were located on the left and right forearms for the left forearm and right forearm( LFRF) paradigm,and on the left forearm and calf for the left forearm and left calf( LFLC)paradigm. Ten healthy subjects participated in this study. Our experiments and analysis showed that the bilateral paradigm( LFRF) elicited larger P300 amplitude and achieved significantly higher classification accuracy than the ipsilateral paradigm( LFLC). However, both paradigms achieved classification accuracies higher than 70% after the completion of several trials on average,which was usually regarded as the minimum accuracy level required for BCI system to be deemed useful.展开更多
As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier i...As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier is crucial in practice. In this work, a preamplifier based on the characteristics of EEG signals is designed, which consists of a highly symmetrical input stage, low-pass filter, 50 Hz notch filter and a post amplifier. A prototype of this EEG module is fabricated and EEG data are obtained through an actual experiment. The results demonstrate that the EEG preamplifier will be a promising unit for BCI in the future.展开更多
由于运动想象脑机接口(MI-BCI)范式不需要视觉刺激,应用MI-BCI范式在提高人机交互系统舒适度方面具有重要意义。为实现辅助设备的异步控制,提高模型的鲁棒性,减少通道使用数量以降低BCI系统输入的复杂性,提出一种基于通道组合(channel c...由于运动想象脑机接口(MI-BCI)范式不需要视觉刺激,应用MI-BCI范式在提高人机交互系统舒适度方面具有重要意义。为实现辅助设备的异步控制,提高模型的鲁棒性,减少通道使用数量以降低BCI系统输入的复杂性,提出一种基于通道组合(channel combination,CC)-数据对齐(euclidean space data alignment,EA)-多尺度全局卷积神经网络(multiscale global convolutional neural network,MGCNN)的运动想象脑电分类方法。通过引入大脑静息状态下的脑电信号,扩展MI-BCI输出指令集;利用CC将22通道脑电数据重构为左右对称通道加中间通道的3通道形式,重构后的数据经过EA方法规范后作为网络输入;构建多尺度卷积模块与全局卷积模块,并行提取脑电信号的局部特征和ERS/ERD全局特征;利用迁移学习提升模型的解码能力。结果表明:该方法在BCI Competition IV 2a数据集上达到了99.28%的平均准确率和0.99的Kappa值,提高了运动想象脑电分类精度,为在线异步运动想象脑机接口的应用与发展作出了贡献。展开更多
Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we ...Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we established a newborn mouse model of hypoxic-ischemic brain injury using a modified Rice-Vannucci method and performed intraperitoneal injection of CGA.We found that CGA intervention effectively reduced the volume of cerebral infarct,alleviated cerebral edema,restored brain tissue structure after injury,and promoted axon growth in injured brain tissue.Moreover,CGA pretreatment alleviated oxygen-glucose deprivation damage of primary neurons and promoted neuron survival.In addition,changes in ferroptosis-related proteins caused by hypoxic-ischemic brain injury were partially reversed by CGA.Furthermore,CGA intervention upregulated the expression of the key ferroptosis factor glutathione peroxidase 4 and its upstream glutamate/cystine antiporter related factors SLC7A11 and SLC3A2.In summary,our findings reveal that CGA alleviates hypoxic-ischemic brain injury in neonatal mice by reducing ferroptosis,providing new ideas for the treatment of neonatal hypoxic-ischemic brain injury.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitu...Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitudes of the benthic exchange fluxes were determined on the basis of concentration gradients of ammonium and nitrate at the near-bottom water and interstitial water interface in combination with calculations of a modified Fick' s first law. Ammonium fluxes varied from - 5.05 to 1.43 μg/( cm^2·d) and were greatly regulated by the production of ammonium in surface sediments, while nitrate fluxes ranged from - 0. 38 to 1.36 μg/ ( cm^2·d) and were dominated by nitrate concentrations in the tidal water. It was found that ammonium was mainly released from sediments into water columns at most of stations whereas nitrate was mostly diffused from overlying waters to intertidal sediments. In total, 823.75 t/a ammonium-N was passed from intertidal sediments to water while about 521.90 t/a nitrate-N was removed from overlying waters to intertidal sediments. This suggests that intertidal sediments had the significant influence on modulating inorganic nitrogen in the tidal water.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.sU2139205,41774011,41874011)the National Key Research and Development Program of China(Grant No.2018YFC1503605)。
文摘Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.
基金supported by the National Natural Science Foundation of China,Nos.82271327(to ZW),82072535(to ZW),81873768(to ZW),and 82001253(to TL).
文摘We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBSS00047(to PL)the National Natural Science Foundation of China,Nos.82072166(to PL),82071394(to XG)+4 种基金Science and Technology Planning Project of Tianjin,No.20YFZCSY00030(to PL)Science and Technology Project of Tianjin Municipal Health Commission,No.TJWJ2021QN005(to XG)Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-006ATianjin Municipal Education Commission Scientific Research Program Project,No.2020KJ164(to JZ)China Postdoctoral Science Foundation,No.2022M712392(to ZY).
文摘We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
基金supported by the National Natural Science Foundation of China under Grant No. 30525030, 60701015, and 60736029.
文摘Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials. In this paper, we propose a simple yet effective approach, named common spatial pattern ensemble (CSPE) classifier, to improve CSP performance. Through division of recording channels, multiple CSP filters are constructed. By projection, log-operation, and subtraction on the original signal, an ensemble classifier, majority voting, is achieved and outlier contaminations are alleviated. Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%.
文摘In this paper, we proposed a new concept: depth of drowsiness, which can more precisely describe the drowsiness than existing binary description. A set of effective markers for drowsiness: normalized band norm was successfully developed. These markers are invariant from voltage amplitude of brain waves, eliminating the need for calibrating the voltage output of the brain-computer interface devices. A new polling algorithm was designed and implemented for computing the depth of drowsiness. The time cost of data acquisition and processing for each estimate is about one second, which is well suited for real-time applications. Test results with a portable brain-computer interface device show that the depth of drowsiness computed by the method in this paper is generally invariant from ages of test subjects and sensor channels (P3 and C4). The comparison between experiment and computing results indicate that the new method is noticeably better than one of the recent methods in terms of accuracy for predicting the drowsiness.
基金supported by the National Natural Science Foundation of China under Grant No. 60571019UESTC Youth Foundation under Grant No. L08010901JX0772 for support.
文摘Abstract-A brain-computer interface (BCI) real- time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments. A key problem to be solved for practical applications is real-time data collection and processing. In this paper, a real-time BCI system is implemented on computer with electroencephalogram amplifier. In our implementation, the on-line voting method is adopted for feedback control strategy, and the voting results are used to control the cursor horizontal movement. Three subjects take part in the experiment. The results indicate that the best accuracy is 90%.
基金the National Natural Science Foundation of China,No.60970062the Shanghai Pujiang Program,No.09PJ1410200
文摘The present study utilized motor imaginary-based brain-computer interface technology combined with rehabilitation training in 20 stroke patients. Results from the Berg Balance Scale and the Holden Walking Classification were significantly greater at 4 weeks after treatment (P 〈 0.01), which suggested that motor imaginary-based brain-computer interface technology improved balance and walking in stroke patients.
基金supported by the National Natural Science Foundation of China under Grant No. 30525030, 60701015, and 60736029.
文摘Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discriminant analysis with probabilistic output (PBLDA). A comparative evaluation of these two methods is conducted. The results shows that: 1) probabilistie information can improve the performance of BCI for subjects with high kappa coefficient, and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters.
文摘R. Penrose and S. Hameroff have proposed an idea that the brain can attain high efficient quantum computation by functioning of microtubular structure of neurons in the cytoskelton of biological cells, including neurons of the brain. But Tegmark estimated the duration of coherence of a quantum state in a warm wet brain to be on the order of 10>–13 </supseconds, which is far smaller than the one tenth of a second associated with consciousness. Contrary to his calculation, it can be shown that the microtubule in a biological brain can perform computation satisfying the time scale required for quantum computation to achieve large quantum bits calculation compared with the conventional silicon processors even at the room temperature from the assumption that tunneling photons are superluminal particles called tachyons. According to the non-local property of tachyons, it is considered that the tachyon field created inside the brain has the capability to exert an influence around the space outside the brain and it functions as a macroscopic quantum dynamical system to meditate the long-range physical correlations with the surrounding world. From standpoint of the brain model based on superluminal tunneling photons, the authors theoretically searched for the possibility to realize the brain-computer interface that allows paralyzed patient to operate computers by their thoughts and they obtained the positive result for its realization from the experiments conducted by using the prototype of a brain-computer interface system.
基金National Key Research and Development Program,China(No.2017YFB13003002)National Natural Science Foundation of China(Nos.61573142,61773164,91420302)Programme of Introducing Talents of Discipline to Universities(the 111 Project)(No.B17017)
文摘The tactile P300 brain-computer interface( BCI) is related to the somatosensory perception and response of the human brain,and is different from visual or audio BCIs. Recently,several studies focused on the tactile stimuli delivered to different parts of the human body. Most of these stimuli were symmetrically bilateral.Only a fewstudies explored the influence of tactile stimuli laterality.In the current study,we extensively tested the performance of a vibrotactile BCI system using ipsilateral stimuli and bilateral stimuli.Two vibrotactile P300-based paradigms were tested. The target stimuli were located on the left and right forearms for the left forearm and right forearm( LFRF) paradigm,and on the left forearm and calf for the left forearm and left calf( LFLC)paradigm. Ten healthy subjects participated in this study. Our experiments and analysis showed that the bilateral paradigm( LFRF) elicited larger P300 amplitude and achieved significantly higher classification accuracy than the ipsilateral paradigm( LFLC). However, both paradigms achieved classification accuracies higher than 70% after the completion of several trials on average,which was usually regarded as the minimum accuracy level required for BCI system to be deemed useful.
基金supported by the National Natural Science Foundation of China under Grant No. 60571019the University of Electronic Science and Technology of China Youth Foundation under Grant No. L08010901JX0772.
文摘As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier is crucial in practice. In this work, a preamplifier based on the characteristics of EEG signals is designed, which consists of a highly symmetrical input stage, low-pass filter, 50 Hz notch filter and a post amplifier. A prototype of this EEG module is fabricated and EEG data are obtained through an actual experiment. The results demonstrate that the EEG preamplifier will be a promising unit for BCI in the future.
文摘由于运动想象脑机接口(MI-BCI)范式不需要视觉刺激,应用MI-BCI范式在提高人机交互系统舒适度方面具有重要意义。为实现辅助设备的异步控制,提高模型的鲁棒性,减少通道使用数量以降低BCI系统输入的复杂性,提出一种基于通道组合(channel combination,CC)-数据对齐(euclidean space data alignment,EA)-多尺度全局卷积神经网络(multiscale global convolutional neural network,MGCNN)的运动想象脑电分类方法。通过引入大脑静息状态下的脑电信号,扩展MI-BCI输出指令集;利用CC将22通道脑电数据重构为左右对称通道加中间通道的3通道形式,重构后的数据经过EA方法规范后作为网络输入;构建多尺度卷积模块与全局卷积模块,并行提取脑电信号的局部特征和ERS/ERD全局特征;利用迁移学习提升模型的解码能力。结果表明:该方法在BCI Competition IV 2a数据集上达到了99.28%的平均准确率和0.99的Kappa值,提高了运动想象脑电分类精度,为在线异步运动想象脑机接口的应用与发展作出了贡献。
基金supported by the National Natural Science Foundation of China,No.81971425the Natural Science Foundation of Zhejiang Province,No.LY20H040002(both to XQF).
文摘Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we established a newborn mouse model of hypoxic-ischemic brain injury using a modified Rice-Vannucci method and performed intraperitoneal injection of CGA.We found that CGA intervention effectively reduced the volume of cerebral infarct,alleviated cerebral edema,restored brain tissue structure after injury,and promoted axon growth in injured brain tissue.Moreover,CGA pretreatment alleviated oxygen-glucose deprivation damage of primary neurons and promoted neuron survival.In addition,changes in ferroptosis-related proteins caused by hypoxic-ischemic brain injury were partially reversed by CGA.Furthermore,CGA intervention upregulated the expression of the key ferroptosis factor glutathione peroxidase 4 and its upstream glutamate/cystine antiporter related factors SLC7A11 and SLC3A2.In summary,our findings reveal that CGA alleviates hypoxic-ischemic brain injury in neonatal mice by reducing ferroptosis,providing new ideas for the treatment of neonatal hypoxic-ischemic brain injury.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金This research is part of the project of the biogeochemical cycling of multi-materials in the Changjiang estuarine and coastal complex ecosystem supported by the National Natural Science Key Foundation of China under contract Nos 40131020 and 49801018 the Tidal Flat Project by Science and Technology Committee of Shanghai under contract No. 04DZ12049+1 种基金 China Postdoctoral Science Foundation under contract No. 2005037135 Shanghai Postdoctoral Science Foundation under contract No.04R214122.
文摘Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitudes of the benthic exchange fluxes were determined on the basis of concentration gradients of ammonium and nitrate at the near-bottom water and interstitial water interface in combination with calculations of a modified Fick' s first law. Ammonium fluxes varied from - 5.05 to 1.43 μg/( cm^2·d) and were greatly regulated by the production of ammonium in surface sediments, while nitrate fluxes ranged from - 0. 38 to 1.36 μg/ ( cm^2·d) and were dominated by nitrate concentrations in the tidal water. It was found that ammonium was mainly released from sediments into water columns at most of stations whereas nitrate was mostly diffused from overlying waters to intertidal sediments. In total, 823.75 t/a ammonium-N was passed from intertidal sediments to water while about 521.90 t/a nitrate-N was removed from overlying waters to intertidal sediments. This suggests that intertidal sediments had the significant influence on modulating inorganic nitrogen in the tidal water.