Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms.Identifying novel biomarkers for Alzheimer’s disease has the potential for pati...Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms.Identifying novel biomarkers for Alzheimer’s disease has the potential for patient risk stratification,early diagnosis,and disease monitoring in response to therapy.A novel class of biomarkers is extracellular vesicles given their sensitivity and specificity to specific diseases.In addition,extracellular vesicles can be used as novel biological therapeutics given their ability to efficiently and functionally deliver therapeutic cargo.This is critical given the huge unmet need for novel treatment strategies for Alzheimer’s disease.This review summarizes and discusses the most recent findings in this field.展开更多
The brain has an exceptionally high requirement for energy metabolism,with glucose serving as the exclusive energy source.Cancers,including glioblastoma,have a high glucose uptake and rely on aerobic glycolysis for en...The brain has an exceptionally high requirement for energy metabolism,with glucose serving as the exclusive energy source.Cancers,including glioblastoma,have a high glucose uptake and rely on aerobic glycolysis for energy metabolism.The alternation of high-efficiency oxidative phosphorylation to a low-efficiency aerobic glycolysis pathway(Warburg effect)provides macromolecules for biosynthesis and proliferation.Current research indicates that the specific metabolism in the tumor tissue and nonnal brain tissue in the glioma allows the use of 5-aminolevulinic acid(5 ALA)-induced protoporphyrin IX(PpIX)and methylene blue(MB)to monitor and correct the development of the tumor.The focus is on the detection of the differences between tumor cells and tumorassociated macrophages/microglia using spectroscopic and microscopic methods,based on the fluorescent signals and the difference in the drug accumulation of photosensitizers(PSs).Since 5 ALA has long been used effectively in the clinic for fluorescent surgical navigation,it was employed as an agent to identify the localization of tumor tissue and study its composition,particularly tumor and immune cells(macrophages),which have also been shown to actively accumulate PpIX.However,since PpIX is photodynamically active,it can be considered effective as the main target of tumor tissue for further successful photodynamic therapy.MB was employed to visualize resident microglia,which is important for their activation/deactivation to prevent the reprogramming of the immune cells by the tumor.Thus,using two drugs,it is possible to prevent crosstalk between tumor cells and the immune cells of different geneses.展开更多
基金This work was supported by the Radiology Research Fund for Alzheimer’s Disease at Stanford University(to AST).
文摘Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms.Identifying novel biomarkers for Alzheimer’s disease has the potential for patient risk stratification,early diagnosis,and disease monitoring in response to therapy.A novel class of biomarkers is extracellular vesicles given their sensitivity and specificity to specific diseases.In addition,extracellular vesicles can be used as novel biological therapeutics given their ability to efficiently and functionally deliver therapeutic cargo.This is critical given the huge unmet need for novel treatment strategies for Alzheimer’s disease.This review summarizes and discusses the most recent findings in this field.
基金The reported study was funded by Russian Foundation for Basic Research according to the research project No.18-29-01062.
文摘The brain has an exceptionally high requirement for energy metabolism,with glucose serving as the exclusive energy source.Cancers,including glioblastoma,have a high glucose uptake and rely on aerobic glycolysis for energy metabolism.The alternation of high-efficiency oxidative phosphorylation to a low-efficiency aerobic glycolysis pathway(Warburg effect)provides macromolecules for biosynthesis and proliferation.Current research indicates that the specific metabolism in the tumor tissue and nonnal brain tissue in the glioma allows the use of 5-aminolevulinic acid(5 ALA)-induced protoporphyrin IX(PpIX)and methylene blue(MB)to monitor and correct the development of the tumor.The focus is on the detection of the differences between tumor cells and tumorassociated macrophages/microglia using spectroscopic and microscopic methods,based on the fluorescent signals and the difference in the drug accumulation of photosensitizers(PSs).Since 5 ALA has long been used effectively in the clinic for fluorescent surgical navigation,it was employed as an agent to identify the localization of tumor tissue and study its composition,particularly tumor and immune cells(macrophages),which have also been shown to actively accumulate PpIX.However,since PpIX is photodynamically active,it can be considered effective as the main target of tumor tissue for further successful photodynamic therapy.MB was employed to visualize resident microglia,which is important for their activation/deactivation to prevent the reprogramming of the immune cells by the tumor.Thus,using two drugs,it is possible to prevent crosstalk between tumor cells and the immune cells of different geneses.