The research progress of brain-derived neurotrophic factor (BDNF) in the treatment of sequelae of stroke is an important topic. Stroke is among the diseases with the highest mortality and disability rates among the el...The research progress of brain-derived neurotrophic factor (BDNF) in the treatment of sequelae of stroke is an important topic. Stroke is among the diseases with the highest mortality and disability rates among the elderly in China. BDNF plays an important role in the development and functional maintenance of the nervous system. In recent years, the application value of BDNF in rehabilitation therapy has gradually received attention. This study has adopted a systematic literature review method, searched Chinese and English databases, screened relevant studies, and conducted data extraction and quality evaluation. This review systematically introduced the research progress of BDNF in the correlation with post-stroke sequelae, with special attention to its application in post-stroke depression, motor dysfunction, and cognitive dysfunction. The results showed that a decrease in BDNF levels is closely related to the exacerbation of depressive symptoms, limited recovery of motor dysfunction, and the occurrence of cognitive dysfunction. BDNF, as a key neurobiological factor, has shown significant potential in the rehabilitation treatment of stroke. By exploring the potential of BDNF as a therapeutic target to prevent and treat sequelae of ischemic stroke, the current research bottlenecks, and the development trends of future treatment strategies.展开更多
Introduction: A traumatic brain injury (TBI) is caused by a forceful bump, blow, or jolt to the head or body, or by an object that pierces the skull and interrupts the normal function of the brain. Severe TBI is estim...Introduction: A traumatic brain injury (TBI) is caused by a forceful bump, blow, or jolt to the head or body, or by an object that pierces the skull and interrupts the normal function of the brain. Severe TBI is estimated at 73 cases per 100,000 people. The mortality of severe TBI can be reduced if a timely diagnosis and treatment of the injuries are made through prognostic factors. Objective: To determine the prognostic factors related to mortality in severe traumatic brain injury at the Hospital General de Zona No. 46. Material and Methods: Retrospective, cross-sectional and descriptive study in beneficiaries admitted to the Hospital General de Zona (HGZ) No. 46 of the Mexican Institute of Social Security (IMSS by its acronym in Spanish), with a diagnosis of severe TBI;the possible prognostic factors related to mortality of severe TBI were obtained from their records. Measures of central tendency and chi square were used for data analysis. Results: The study sample consisted of 60 subjects diagnosed with severe traumatic brain injury, of which 5 (8%) were women and 55 (92%) were men, and all 60 (100%) patients died. The average age of the sample was 26 with a standard deviation of 9 years. The variables that had a p value less than or equal to 0.05 were: Mydriasis, seizures, Hyperglycemia, Normoglycemia, Hypothermia and Hypotension. This means that these variables were associated with mortality. Conclusion: Statistical significance is demonstrated in prognostic factors of mortality in severe traumatic brain injury with p < 0.05 in the case of mydriasis, seizures, hyperglycemia, normoglycemia, hypothermia and hypotension.展开更多
Brain-derived neurotrophic factor(BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an...Brain-derived neurotrophic factor(BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters.展开更多
The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits,and the underlying mechanism following cerebral ischemia-reperfusion(...The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits,and the underlying mechanism following cerebral ischemia-reperfusion(I/R) via increasing the expression of brain derived neurotrophic factor(BDNF) and synaptophysin(SYN) in the hippocampus.Healthy adult male SD rats were randomly divided into sham operation group(n=51),model group(n=51),acupuncture group(n=51) and acupuncture control group(n=51).The middle cerebral I/R model was established.Acupunctures were performed in the acupuncture group and acupuncture control group at acupoints of Taixi(K103),Taichong(ST09) of both sides,for 30 min once daily every morning.The animals in the sham operation group and model group were conventionally fed in the cage,without any intervention therapy.The rats of each group were assessed with modified neurological severity scores(m NSS).The expression of BDNF and SYN in the hippocampus was detected by immunohistochemical SP method and the synaptic structure in hippocampus area was assessed morphologically and quantitatively at the 3rd,7th and 14 th day.The Morris water Maze(MWM) test was used to evaluate the rats' learning and memory abilities on the 15 th day after acupuncture.The animals in the acupuncture control group and sham operation group presented no neurological deficit.In the acupuncture group,the nerve functional recovery was significantly better than that in the model group at the 7th and 14 th day after modeling.The average MWM escape latency in the acupuncture group was shorter than that in the model group at the 3rd,4th and 5th day.The number of crossings of the platform quadrant in the acupuncture group was significantly more than that in the model group.At the each time point,the expression levels of BDNF and SYN in the hippocampal regions increased significantly in the model group as compared with the sham operation group and the acupuncture control group.In the acupuncture group,the expression levels of BDNF at the 7th and 14 th day increased more significantly than those in the model group.In the acupuncture group,the expression levels of SYN at the each time point increased more significantly than those in the model group.The post-synaptic density(PSD) was significantly increased and the synapse cleft width was narrowed in the acupuncture group as compared with other groups.The synaptic curvatures were improved obviously in the acupuncture group in contrast to the model group.It was concluded that the "nourishing liver and kidney" acupuncture therapy has positive effects on behavioral recovery,as well as learning and memory abilities,probably by promoting the expression of BDNF and SYN,and synaptic structure reconstruction in the ipsilateral hippocampus after I/R in rats.The "nourishing liver and kidney" acupuncture therapy can promote the functional recovery in rats after cerebral ischemia injury.展开更多
Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The ...Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.展开更多
Objective: To detect the expressions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in purified rat choroid plexus epithelial cells in vitro. Methods: Primary and passage choroid plexu...Objective: To detect the expressions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in purified rat choroid plexus epithelial cells in vitro. Methods: Primary and passage choroid plexus epithelial cells were obtained from newborn, one-day Spragne-Dawley rats. The expressions of BDNF and NGF were measured by qRT-PCR and Western blottingting. The secretions of BDNF and NGF were detected by ELISA. Cell supematants of primary cells, purified cells and passage 1 cells were harvested. Results: The expression of BDNF in the purified cells was significantly lower than that in the primary cells (P〈0.05), and it in the primary cells and the purified cells was significantly higher than that in the passage 1 cells (P〈0.05). The expression of NGF was significantly higher in the purified cells than in the primary cells and the passage 1 cells (P〈0.05). It in the passage 1 cells was significantly higher than that in the primary cells (P〈0.05). Conclusion: The time of CPECs transplantation for central nervous system diseases should be selected based on their secretory function and features,which could lead to better and more effective treatment.展开更多
BACKGROUND Visceral hypersensitivity is considered to play a vital role in the pathogenesis of irritable bowel syndrome(IBS). Neurotrophins have drawn much attention in IBS recently. Brain-derived neurotrophic factor(...BACKGROUND Visceral hypersensitivity is considered to play a vital role in the pathogenesis of irritable bowel syndrome(IBS). Neurotrophins have drawn much attention in IBS recently. Brain-derived neurotrophic factor(BDNF) was found to mediate visceral hypersensitivity via facilitating sensory nerve growth in pre-clinical studies. We hypothesized that BDNF might play a role in the pathogenesis of diarrhea-predominant IBS(IBS-D).AIM To investigate BDNF levels in IBS-D patients and its role in IBS-D pathophysiology.METHODS Thirty-one IBS-D patients meeting the Rome IV diagnostic criteria and 20 ageand sex-matched healthy controls were recruited. Clinical and psychological assessments were first conducted using standardized questionnaires. Visceral sensitivity to rectal distension was tested using a high-resolution manometry system. Colonoscopic examination was performed and four mucosal pinch biopsies were taken from the rectosigmoid junction. Mucosal BDNF expression and nerve fiber density were analyzed using immunohistochemistry. Mucosal BDNF mRNA levels were quantified by quantitative real-time polymerase chain reaction. Correlations between these parameters were examined.RESULTS The patients had a higher anxiety score [median(interquartile range), 6.0(2.0-10.0) vs 3.0(1.0-4.0), P = 0.003] and visceral sensitivity index score [54.0(44.0-61.0)vs 21.0(17.3-30.0), P < 0.001] than controls. The defecating sensation threshold[60.0(44.0-80.0) vs 80.0(61.0-100.0), P = 0.009], maximum tolerable threshold[103.0(90.0-128.0) vs 182.0(142.5-209.3), P < 0.001] and rectoanal inhibitory reflex threshold [30.0(20.0-30.0) vs 30.0(30.0-47.5), P = 0.032] were significantly lower in IBS-D patients. Intestinal mucosal BDNF protein [3.46 E-2(3.06 E-2-4.44 E-2) vs3.07 E-2(2.91 E-2-3.48 E-2), P = 0.031] and mRNA [1.57(1.31-2.61) vs 1.09(0.74-1.42), P = 0.001] expression and nerve fiber density [4.12 E-2(3.07 E-2-7.46 E-2) vs1.98 E-2(1.21 E-2-4.25 E-2), P = 0.002] were significantly elevated in the patients.Increased BDNF expression was positively correlated with abdominal pain and disease severity and negatively correlated with visceral sensitivity parameters.CONCLUSION Elevated mucosal BDNF may participate in the pathogenesis of IBS-D via facilitating mucosal nerve growth and increasing visceral sensitivity.展开更多
Objective:To determine the relationship between the blood serum brain-derived neurotrophic factor(BDNF) level and cognitive function deterioration in patients with obstructive sleep apnea/ hypopnea syndrome(OSAHS)...Objective:To determine the relationship between the blood serum brain-derived neurotrophic factor(BDNF) level and cognitive function deterioration in patients with obstructive sleep apnea/ hypopnea syndrome(OSAHS),and to explore the possible mechanism of cognitive impairment. Methods:Twenty-eight male OSAHS patients and 14 normal males(as controls) were enrolled in the study.Polysomnography and the Montreal cognitive assessment(MoCA) were conducted. The blood serum BDNF levels were measured using ELISA.Results:The OSAHS group had significantly decreased blood serum BDNF levels compared with the control group(t=-10.912, P=0.000).The blood serum BDNF level of the subjects was significantly positively associated with the MoCA score(r=0.544,P=0.000),significantly negatively associated with the apneahypopnea index(AHI) and shallow sleep(S1+S2)(AHI:r=-0.607,P=0.000;S1+S2:r =-0.768,P= 0.000),and significantly positively associated with the lowest SaO<sub>2</sub>(LSO),slow wave sleep(S3+S4), and rapid eye movement sleep(REM)(LSO:r=0.566,P = 0.000;S3+S4:r=0.778,P=0.000;REM: r=0.575,P=0.000).Conclusions:OSAHS patients have significantly decreased blood serum BDNF levels compared with the control.Nocturnal hypoxia as well as the deprivation of slow wave sleep and REM may lead to the decreased serum BDNF level of OSAHS patients.This decreased blood serum BDNF level may contribute to the cognitive impairment in OSAHS.展开更多
Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to ...Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia.展开更多
Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able t...Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf) and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV) or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.展开更多
BACKGROUND: It has been confirmed that brain-derived neurotrophic factor (BDNF) can promote the proliferation of neural stem cells (NSCs) and protect neuron-like cells in vitro. However, its effect on endogenous ...BACKGROUND: It has been confirmed that brain-derived neurotrophic factor (BDNF) can promote the proliferation of neural stem cells (NSCs) and protect neuron-like cells in vitro. However, its effect on endogenous NSCs in vivo is still unclear. OBJECTIVE: To evaluate whether BDNF can induce the endogenous NSCs to proliferate and differentiate into the neurons in the mice model of cerebral infarction. DESIGN: A synchronal controlled observation. SETTINGS: Department of Neurology, Microbiology Division of the Department of Laboratory, Tianjin First Central Hospital; Howard Florey Institute, Medical College, the University of Melbourne. MATERIALS: Twenty-four pure breed C57BL/6J mice at the age of 10 weeks old (12 males and 12 females) were divided into saline control group and BDNF-treated group, 6 males and 6 females in each group. METHODS: The experiments were performed at the University of Melbourne from July 2004 to February 2005. ① The left middle cerebral artery (MCA) was ligated in both groups to establish models of cerebral infarction and the Matsushita measuring method was used to monitor the blood flow of the lesioned region supplied by MCA. 75% reduction of blood flow should be reached in the lesioned region. ② At 24 hours after infarction, mice in the BDNF-treated group were administrated with BDNF, which was slowly delivered using an ALZET osmium pump design. BDNF was dissolved in saline at the dosage of 500 mg/kg and injected into the pump, which could release the solution consistently in the following 28 days. The mice in the saline control group accepted the same volume of saline at 24 hours after infarction. ③ The Rotarod function test began at 1 week preoperatively, the time stayed on Rotarod was recorded. The mice were tested once a day till the end of the experiment. At 4 weeks post cerebral infarction, double labeling of Nestin and GFAP, BIH tubulin and CNPase immunostaining was performed to observe the differentiation directions of the re-expressed endogenous NSCs, and the percentages of the cells differentiated into astrocytes, neurons and oligodendrocytes were calculated. MAIN OUTCOME MEASURES: ① The differentiation directions of the re-expressed endogenous NSCs, and the percentage of the cells differentiated into astrocytes, neurons and oligodendrocytes.② Comparison of motor function between the two groups. RESULTS: All the 24 pure C57BL/6J mice were involved in the analysis of results. ①Positively expressed endogenous NSCs appeared in the mice of both groups, and they mainly distributed around the focus of lesion, as well as the contralateral side. The expressed cells in the BDNF-treated group were obviously more than those in the saline control group. ②Activations of endogenous NSCs: At 4 weeks after infarction, re-expressions of endogenous NSCs appeared in both groups. The number of the re-expressed cells in the BDNF-treated group was about 4.2 times higher than that in the saline control group. The percentage of the cells differentiated into neurons in the BDNF-treated group was significantly higher than that in the saline control group (36%, 15%), the percentage of the cells differentiated into astrocytes was lower than that in the saline control group (54%, 77%), whereas the percentage of the cells differentiated into oligodendrocytes was similar to that in the saline control group (10%, 8%). ③ Results of motor functional test: Compared with before cerebral infarction, the mice in both groups manifested as obvious decrease in motor function at 1 week after infarction, whereas the recovery of motor function in the BDNF-treated group was significantly superior to that in the saline control group at 2, 3 and 4 weeks (P 〈 0.01). CONCLUSION: BDNF can promote the proliferation of endogenous NSCs in the brain of mice with cerebral infarction, it can decrease the differentiation rate of astrocytes, and increase the differentiation rate of neurons. BDNF has small influence on the differentiation of endogenous NSCs into oligodendrocytes, which was not benefit for the recovery of neural axon. Endogenous NSCs may improve the motor function of mice through the above pathways.展开更多
Urinary brain-derived neurotrophic factor(BDNF), an ubiquitous neurotrophin, was found to rise in patients with benign prostatic hyperplasia(BPH). We hypothesized that the urinary level of BDNF could be a potentia...Urinary brain-derived neurotrophic factor(BDNF), an ubiquitous neurotrophin, was found to rise in patients with benign prostatic hyperplasia(BPH). We hypothesized that the urinary level of BDNF could be a potential biomarker for lower urinary tract symptoms(LUTS) in patients with BPH. Totally, 76 patients with BPH-caused LUTS and 32 male control subjects without BPH were enrolled. International Prostate Symptom Score(IPSS) was applied to assess the symptom severity of LUTS. Urodynamic tests were performed for the diagnosis of underlying detrusor overactivity(DO) in the patients with BPH. Urine samples were collected from all subjects. Urinary BDNF levels were measured using enzyme-linked immunosorbent assays and normalized by urinary creatinine(Cr) levels. Seventy-six BPH patients were divided into moderate LUTS group(n=51, 720) according to the IPSS. Of the 76 BPH patients, DO was present in 34(44.7%) according to the urodynamic test. The urinary BDNF/Cr levels were significantly higher in BPH patients with moderate LUTS(8.29±3.635, P〈0.0001) and severe LUTS(11.8±6.44, P〈0.0001) than normal controls(1.71±0.555). Patients with severe LUTS tended to have higher urinary BDNF/Cr levels than patients with moderate LUTS(11.8±6.44 vs. 8.29±3.635, P=0.000). The conditions of BPH with LUTS correlated with elevated urinary BDNF levels, and urinary BDNF levels were even higher in BPH-DO patients. The results of this study have provided evidence to suggest that urinary BDNF level test could evaluate the severity of LUTS in BPH patients, and BDNF level can be used as a biomarker展开更多
Brain-derived neurotrophic factor(BDNF), which regulates neuronal survival, growth differentiation, and synapse formation, is known to be associated with depression and post-traumatic stress disorder(PTSD). However, t...Brain-derived neurotrophic factor(BDNF), which regulates neuronal survival, growth differentiation, and synapse formation, is known to be associated with depression and post-traumatic stress disorder(PTSD). However, the molecular mechanism for those mental disorders remains unknown. Studies have shown that BDNF is associated with PTSD risk and exaggerated startle reaction(a major arousal manifestation of PTSD) in United States military service members who were deployed during the wars in Iraq and Afghanistan. The frequency of the Met/Met in BDNF gene was greater among those with PTSD than those without PTSD. Among individuals who experienced fewer lifetime stressful events, the Met carriers have significantly higher total and startle scores on the PTSD Checklist than the Val/Val carriers. In addition, subjects with PTSD showed higher levels of BDNF in their peripheral blood plasma than the non-probable-PTSD controls. Increased BDNF levels and startle response were observed in both blood plasma and brain hippocampus by inescapable tail shock in rats. In this paper, we reviewed these data to discuss BDNF as a potential biomarker for PTSD risk and its possible roles in the onset of PTSD.展开更多
BACKGROUND: Accumulated evidence indicates an important role for hippocampal dendrite atrophy in development of depression, while brain-derived neurotrophic factor (BDNF) participates in hippocampal dendrite growth...BACKGROUND: Accumulated evidence indicates an important role for hippocampal dendrite atrophy in development of depression, while brain-derived neurotrophic factor (BDNF) participates in hippocampal dendrite growth. OBJECTIVE: To discuss the role of BDNF and neuronal nitric oxide synthase (nNOS) in chronic and unpredictable stress-induced depression and the pathogenesis of depression. DESIGN, TIME AND SETTING: Randomized, controlled animal experiment. The experiment was carded out from October 2006 to May 2007 at the Department of Animal Physiology, College of Life Science, Shaanxi Normal University. MATERIALS: Thirty-seven male Sprague-Dawley rats weighing 250-300 g at the beginning of the experiment were obtained from Shaanxi Provincial Institute of Traditional Chinese Medicine (Xi'an, China). BDNF antibody and nNOS antibody were provided by Santa Cruz (USA). K252a (BDNF inhibitor) and 7-NI (nNOS inhibitor) were provided by Sigma (USA). METHODS: Animals were randomly divided into five groups: Control group, chronic unpredicted mild stress (CUMS) group, K252a group, K252a+7-NI group and 7-NI+CUMS group. While the Control, K252a and K252a+7-NI groups of rats not subjected to stress had free access to food and water, other groups of rats were subjected to nine stressors randomly applied for 21 days, with each stressor applied 2-3 times. On days 1, 7, 14 and 21 during CUMS, rats received microinjection of 1 μL of physiological saline in the Control and CUMS groups, 1 ~ L of K252a in the K252a group, 1 μL of K252a and 7-NI in the K252a+7-NI group, and 1 μL of 7-NI in the 7-NI+CUMS group. We observed a variety of alterations in sucrose preference, body weight change, open field test and forced swimming test, and observed the expression of BDNF and nNOS in rat hippocampus by immunohistochemistry; MAIN OUTCOME MEASURES: ① A variety.of behavioral alterations of rats; ② The expression of BDNF and nNOS in rat hippocampus. RESULTS: Compared with the Control group, the behavior of the CUMS rats was significantly depressed, the expression of BDNF decreased (P 〈 0.01) but the expression of nNOS increased (P 〈 0.01). The behavior of rats given intra-hippocampal injection of BDNF inhibitor was significantly depressed and the expression of nNOS was significantly increased (P 〈 0.01). Intra-hippocampal injections of an nNOS inhibitor reversed the depression-like behavioral changes induced by CUMS or intra-hippocampal injection of BDNF inhibitor. CONCLUSION: CUMS induced a decrease in expression of BDNF and an increase in expression of NO in the hippocampus, which may lead to depression.展开更多
The effect of transcranial magnetic stimulation (TMS) on the neurological functional recovery and expression of c-Fos and brain-derived neurotrophic factor (BDNF) of the cerebral cortex in rats with cerebral infar...The effect of transcranial magnetic stimulation (TMS) on the neurological functional recovery and expression of c-Fos and brain-derived neurotrophic factor (BDNF) of the cerebral cortex in rats with cerebral infarction was investigated. Cerebral infarction models were established by using left middle cerebral artery occlusion (MCAO) and were randomly divided into a model group (n=40) and a TMS group (n=40). TMS treatment (2 times per day, 30 pulses per time) with a frequency of 0.5 Hz and magnetic field intensity of 1.33 Tesla was carried out in TMS group after MCAO. Modified neurological severity score (NSS) were recorded before and 1, 7, 14, 21, and 28 day(s) after MCAO. The expression of c-Fos and BDNF was immunohistochemically detected 1, 7, 14, 21, and 28 day(s) after infarction respectively. Our results showed that a significant recovery of NSS (P〈0.05) was found in animals treated by TMS on day 7, 14, 21, and 28 as compared with the animals in the model group. The positive expression of c-Fos and BDNF was detected in the cortex surrounding the infarction areas, while the expression of c-Fos and BDNF increased significantly in TMS treatment group in comparison with those in model group 7, 14, 21, and 28 days (P〈0.05) and 7 14, 21 days (P〈0.01) after infarction, respectively. It is concluded that TMS has therapeutic effect on cerebral infarction and this may have something to do with TMS's ability to promote the expression of c-Fos and BDNF of the cerebral cortex in rats with cerebral infarction.展开更多
Traumatic brain injury(TBI) is a major health problem worldwide.Following primary mechanical insults,a cascade of secondary injuries often leads to further neural tissue loss.Thus far there is no cure to rescue the ...Traumatic brain injury(TBI) is a major health problem worldwide.Following primary mechanical insults,a cascade of secondary injuries often leads to further neural tissue loss.Thus far there is no cure to rescue the damaged neural tissue.Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration.The neurotrophin brain-derived neurotrophic factor(BDNF) has significant effect in both aspects,promoting neuronal survival,synaptic plasticity and neurogenesis.Recently,the flavonoid 7,8-dihydroxyflavone(7,8-DHF),a small Trk B agonist that mimics BDNF function,has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI.Compared to BDNF,7,8-DHF has a longer half-life and much smaller molecular size,capable of penetrating the blood-brain barrier,which makes it possible for non-invasive clinical application.In this review,we summarize functions of the BDNF/Trk B signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.展开更多
BACKGROUND:Studies have demonstrated that brain-derived neurotrophic factor (BDNF) has a dual effect on epilepsy. However, the relationship between epilepsy-induced brain injury and BDNF remains poorly understood.O...BACKGROUND:Studies have demonstrated that brain-derived neurotrophic factor (BDNF) has a dual effect on epilepsy. However, the relationship between epilepsy-induced brain injury and BDNF remains poorly understood.OBJECTIVE:According to ultrastructural and molecular parameters, to detect the degree of neuronal injury and BDNF expression changes at different brain regions and different kindling times to determine the effects of BDNF on epilepsy-induced brain injury.DESIGN, TIME AND SETTING:A randomized, controlled, animal experiment based on neuropathology and molecular biology was performed at the Department of Physiology and Department of Pathology, Basic Medical College of Jilin University in 2003.MATERIALS:UltraSensitiveTM SP kit for immunohistochemistry (Fuzhou Maxim Biotechnology, China), BDNF antibody (concentrated type, Wuhan Boster Biological Technology, China), JEM-1000SX transmission electron microscopy (JEOL, Japan), and BH-2 light microscope (Olympus, Japan) were used in the present study.METHODS:Wistar rats were randomly assigned to control (n = 6), sham-surgery (n = 6), and model (n = 60) groups. The control group rats were not treated; an electrode was embedded into the amygdala in rats from the sham-surgery and model groups; an amygdala kindling epilepsy model was established in the model group.MAIN OUTCOME MEASURES:Pathological changes in the temporal lobe and hippocampus were observed by light and electron microscopy at 1, 3, 7, 14, and 21 days following kindling, and BDNF expression in the various brain regions was determined by immunohistochemistry.RESULTS:In the model group, temporal lobe cortical and hippocampal neurons were swollen and the nuclei were laterally deviated. There were also some apoptotic neurons 3 days after kindling. The nucleoli disappeared and the nuclei appeared broken or lysed, as well as slight microglia hyperplasia, at 7 days. Electron microscopic observation displayed chromatin aggregation in the nuclei and slight mitochondrion swelling 3 days after kindling. Injury changes were aggravated at 7 days, characterized by broken cytoplasmic membrane and pyknosis. With the development of seizure, the number of BDNF-positive neurons in the hippocampus and temporal lobe increased and peaked at 7 days. Moreover, hippocampal and cortical temporal lobe injury continued. Following termination of electrical stimulation after 7 days of kindling, BDNF expression decreased, but continued to be expressed, up to 21 days of kindling. In addition, the number of temporal and hippocampal BDNF-positive neurons was greater than the control group.CONCLUSION:Brain injury and BDNF expression peaked at 7 days after kindling, and hippocampal changes were significant.展开更多
AIM To assess the relationship of brain-derived neurotrophic factor(BDNF) with cognitive impairment in patients with type 2 diabetes. METHODS The study included 40 patients with diabetes mellitus type 2(DM2), 37 patie...AIM To assess the relationship of brain-derived neurotrophic factor(BDNF) with cognitive impairment in patients with type 2 diabetes. METHODS The study included 40 patients with diabetes mellitus type 2(DM2), 37 patients with chronic kidney disease in hem dialysis hemodialysis therapy(HD) and 40 healthy subjects. BDNF in serum was quantified by ELISA. The Folstein Mini-Mental State Examination was used to evaluate cognitive impairment.RESULTS The patients with DM2 and the patients in HD were categorized into two groups, with cognitive impairment and without cognitive impairment. The levels of BDNF showed significant differences between patients with DM2(43.78 ± 9.05 vs 31.55 ± 10.24, P = 0.005). There were no differences between patients in HD(11.39 ± 8.87 vs 11.11 ± 10.64 P = 0.77); interestingly, ferritin levels were higher in patients with cognitive impairment(1564 ± 1335 vs 664 ± 484 P = 0.001). The comparison of BDNF values, using a Kruskal Wallis test, between patients with DM2, in HD and healthy controls showed statistical differences(P < 0.001).CONCLUSION Low levels of BDNF are associated with cognitive impairment in patients with DM2. The decrease of BDNF occurs early and progressively in patients in HD.展开更多
BACKGROUND: Previous studies have shown that nerve regeneration factor (NRF) provides neuroprotective effects. However, the neuroprotective effects on retinal ganglion cells in an animal model of glaucoma remain un...BACKGROUND: Previous studies have shown that nerve regeneration factor (NRF) provides neuroprotective effects. However, the neuroprotective effects on retinal ganglion cells in an animal model of glaucoma remain uncertain. OBJECTIVE: To determine the neuroprotective effects of NRF on retinal ganglion cells in a rabbit model of acute hyper-intraocular pressure and to compare the effects on brain-derived neurotrophic factor (BDNF). DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at Jiangsu Provincial Key Laboratory of Neural Regeneration from September 2006 to August 2007. MATERIALS: Sterone, a major component of NRF, was provided by the Key Laboratory of Neural Regeneration, Nantong University in China; BDNF was provided by BioDesign Inc., USA. METHODS: A total of 24 healthy rabbits were randomly assigned to NRF, BDNF, and phosphate buffered saline groups, with 8 rabbits per group. The left eyes were considered normal controls, and acute hyper-intraocular pressure was induced in the right eyes via anterior chamber perfusion. The right camera vitrea bulbi was injected with 4.5 μg NRF, 3.75 μg BDNF, or 5 μL 0.1 mol/L phosphate buffered saline, respectively. MAIN OUTCOME MEASURES: Retinal ganglion cells were reverse-labeled using horseradish peroxidase to quantify cell density at 2, 4, and 6 mm from the optic disc edge. RESULTS: NRF increased the number of surviving retinal ganglion cells at the optic disc edge (P 〈 0.01 or P 〈 0.05). The density of surviving retinal ganglion cells decreased with increasing distance from the optic disc. The number of retinal ganglion cells in the BDNF group was similar to the NRF group (P 〉 0.05). At 2, 4, and 6 mm away from the optic disc edge, there was no significant difference in retinal ganglion cell density between NRF and BDNF groups (P〉 0.05). CONCLUSION: NRF provided protection to retinal ganglion cells in a rabbit model of acute hyper-intraocular pressure, Le., NRF enhanced the survival rate of retinal ganglion cells. The neuroprotective effect was similar to BDNF.展开更多
文摘The research progress of brain-derived neurotrophic factor (BDNF) in the treatment of sequelae of stroke is an important topic. Stroke is among the diseases with the highest mortality and disability rates among the elderly in China. BDNF plays an important role in the development and functional maintenance of the nervous system. In recent years, the application value of BDNF in rehabilitation therapy has gradually received attention. This study has adopted a systematic literature review method, searched Chinese and English databases, screened relevant studies, and conducted data extraction and quality evaluation. This review systematically introduced the research progress of BDNF in the correlation with post-stroke sequelae, with special attention to its application in post-stroke depression, motor dysfunction, and cognitive dysfunction. The results showed that a decrease in BDNF levels is closely related to the exacerbation of depressive symptoms, limited recovery of motor dysfunction, and the occurrence of cognitive dysfunction. BDNF, as a key neurobiological factor, has shown significant potential in the rehabilitation treatment of stroke. By exploring the potential of BDNF as a therapeutic target to prevent and treat sequelae of ischemic stroke, the current research bottlenecks, and the development trends of future treatment strategies.
文摘Introduction: A traumatic brain injury (TBI) is caused by a forceful bump, blow, or jolt to the head or body, or by an object that pierces the skull and interrupts the normal function of the brain. Severe TBI is estimated at 73 cases per 100,000 people. The mortality of severe TBI can be reduced if a timely diagnosis and treatment of the injuries are made through prognostic factors. Objective: To determine the prognostic factors related to mortality in severe traumatic brain injury at the Hospital General de Zona No. 46. Material and Methods: Retrospective, cross-sectional and descriptive study in beneficiaries admitted to the Hospital General de Zona (HGZ) No. 46 of the Mexican Institute of Social Security (IMSS by its acronym in Spanish), with a diagnosis of severe TBI;the possible prognostic factors related to mortality of severe TBI were obtained from their records. Measures of central tendency and chi square were used for data analysis. Results: The study sample consisted of 60 subjects diagnosed with severe traumatic brain injury, of which 5 (8%) were women and 55 (92%) were men, and all 60 (100%) patients died. The average age of the sample was 26 with a standard deviation of 9 years. The variables that had a p value less than or equal to 0.05 were: Mydriasis, seizures, Hyperglycemia, Normoglycemia, Hypothermia and Hypotension. This means that these variables were associated with mortality. Conclusion: Statistical significance is demonstrated in prognostic factors of mortality in severe traumatic brain injury with p < 0.05 in the case of mydriasis, seizures, hyperglycemia, normoglycemia, hypothermia and hypotension.
文摘Brain-derived neurotrophic factor(BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters.
基金supported by grants from Ministry of Human Resources and Social Security of the People’s Republic of China:Returned Overseas Personnel Science and Technology Activities Project Merit Funding(No.2015192)
文摘The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits,and the underlying mechanism following cerebral ischemia-reperfusion(I/R) via increasing the expression of brain derived neurotrophic factor(BDNF) and synaptophysin(SYN) in the hippocampus.Healthy adult male SD rats were randomly divided into sham operation group(n=51),model group(n=51),acupuncture group(n=51) and acupuncture control group(n=51).The middle cerebral I/R model was established.Acupunctures were performed in the acupuncture group and acupuncture control group at acupoints of Taixi(K103),Taichong(ST09) of both sides,for 30 min once daily every morning.The animals in the sham operation group and model group were conventionally fed in the cage,without any intervention therapy.The rats of each group were assessed with modified neurological severity scores(m NSS).The expression of BDNF and SYN in the hippocampus was detected by immunohistochemical SP method and the synaptic structure in hippocampus area was assessed morphologically and quantitatively at the 3rd,7th and 14 th day.The Morris water Maze(MWM) test was used to evaluate the rats' learning and memory abilities on the 15 th day after acupuncture.The animals in the acupuncture control group and sham operation group presented no neurological deficit.In the acupuncture group,the nerve functional recovery was significantly better than that in the model group at the 7th and 14 th day after modeling.The average MWM escape latency in the acupuncture group was shorter than that in the model group at the 3rd,4th and 5th day.The number of crossings of the platform quadrant in the acupuncture group was significantly more than that in the model group.At the each time point,the expression levels of BDNF and SYN in the hippocampal regions increased significantly in the model group as compared with the sham operation group and the acupuncture control group.In the acupuncture group,the expression levels of BDNF at the 7th and 14 th day increased more significantly than those in the model group.In the acupuncture group,the expression levels of SYN at the each time point increased more significantly than those in the model group.The post-synaptic density(PSD) was significantly increased and the synapse cleft width was narrowed in the acupuncture group as compared with other groups.The synaptic curvatures were improved obviously in the acupuncture group in contrast to the model group.It was concluded that the "nourishing liver and kidney" acupuncture therapy has positive effects on behavioral recovery,as well as learning and memory abilities,probably by promoting the expression of BDNF and SYN,and synaptic structure reconstruction in the ipsilateral hippocampus after I/R in rats.The "nourishing liver and kidney" acupuncture therapy can promote the functional recovery in rats after cerebral ischemia injury.
文摘Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.
基金Supported by grants from the National Natural Science Foundation of China(No.30973099 and No.81271341)
文摘Objective: To detect the expressions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in purified rat choroid plexus epithelial cells in vitro. Methods: Primary and passage choroid plexus epithelial cells were obtained from newborn, one-day Spragne-Dawley rats. The expressions of BDNF and NGF were measured by qRT-PCR and Western blottingting. The secretions of BDNF and NGF were detected by ELISA. Cell supematants of primary cells, purified cells and passage 1 cells were harvested. Results: The expression of BDNF in the purified cells was significantly lower than that in the primary cells (P〈0.05), and it in the primary cells and the purified cells was significantly higher than that in the passage 1 cells (P〈0.05). The expression of NGF was significantly higher in the purified cells than in the primary cells and the passage 1 cells (P〈0.05). It in the passage 1 cells was significantly higher than that in the primary cells (P〈0.05). Conclusion: The time of CPECs transplantation for central nervous system diseases should be selected based on their secretory function and features,which could lead to better and more effective treatment.
基金Supported by the National Key Technology Support Program during "12th Five-Year Plan"Period of China,No.2014BAI08B00the Leapforward Development Program for Beijing Biopharmaceutical Industry(G20),No.Z171100001717008
文摘BACKGROUND Visceral hypersensitivity is considered to play a vital role in the pathogenesis of irritable bowel syndrome(IBS). Neurotrophins have drawn much attention in IBS recently. Brain-derived neurotrophic factor(BDNF) was found to mediate visceral hypersensitivity via facilitating sensory nerve growth in pre-clinical studies. We hypothesized that BDNF might play a role in the pathogenesis of diarrhea-predominant IBS(IBS-D).AIM To investigate BDNF levels in IBS-D patients and its role in IBS-D pathophysiology.METHODS Thirty-one IBS-D patients meeting the Rome IV diagnostic criteria and 20 ageand sex-matched healthy controls were recruited. Clinical and psychological assessments were first conducted using standardized questionnaires. Visceral sensitivity to rectal distension was tested using a high-resolution manometry system. Colonoscopic examination was performed and four mucosal pinch biopsies were taken from the rectosigmoid junction. Mucosal BDNF expression and nerve fiber density were analyzed using immunohistochemistry. Mucosal BDNF mRNA levels were quantified by quantitative real-time polymerase chain reaction. Correlations between these parameters were examined.RESULTS The patients had a higher anxiety score [median(interquartile range), 6.0(2.0-10.0) vs 3.0(1.0-4.0), P = 0.003] and visceral sensitivity index score [54.0(44.0-61.0)vs 21.0(17.3-30.0), P < 0.001] than controls. The defecating sensation threshold[60.0(44.0-80.0) vs 80.0(61.0-100.0), P = 0.009], maximum tolerable threshold[103.0(90.0-128.0) vs 182.0(142.5-209.3), P < 0.001] and rectoanal inhibitory reflex threshold [30.0(20.0-30.0) vs 30.0(30.0-47.5), P = 0.032] were significantly lower in IBS-D patients. Intestinal mucosal BDNF protein [3.46 E-2(3.06 E-2-4.44 E-2) vs3.07 E-2(2.91 E-2-3.48 E-2), P = 0.031] and mRNA [1.57(1.31-2.61) vs 1.09(0.74-1.42), P = 0.001] expression and nerve fiber density [4.12 E-2(3.07 E-2-7.46 E-2) vs1.98 E-2(1.21 E-2-4.25 E-2), P = 0.002] were significantly elevated in the patients.Increased BDNF expression was positively correlated with abdominal pain and disease severity and negatively correlated with visceral sensitivity parameters.CONCLUSION Elevated mucosal BDNF may participate in the pathogenesis of IBS-D via facilitating mucosal nerve growth and increasing visceral sensitivity.
基金supported by the Science and Technology Bureau of Hunan Province,People's Republic of China(grant number 2011-FJ3192)
文摘Objective:To determine the relationship between the blood serum brain-derived neurotrophic factor(BDNF) level and cognitive function deterioration in patients with obstructive sleep apnea/ hypopnea syndrome(OSAHS),and to explore the possible mechanism of cognitive impairment. Methods:Twenty-eight male OSAHS patients and 14 normal males(as controls) were enrolled in the study.Polysomnography and the Montreal cognitive assessment(MoCA) were conducted. The blood serum BDNF levels were measured using ELISA.Results:The OSAHS group had significantly decreased blood serum BDNF levels compared with the control group(t=-10.912, P=0.000).The blood serum BDNF level of the subjects was significantly positively associated with the MoCA score(r=0.544,P=0.000),significantly negatively associated with the apneahypopnea index(AHI) and shallow sleep(S1+S2)(AHI:r=-0.607,P=0.000;S1+S2:r =-0.768,P= 0.000),and significantly positively associated with the lowest SaO<sub>2</sub>(LSO),slow wave sleep(S3+S4), and rapid eye movement sleep(REM)(LSO:r=0.566,P = 0.000;S3+S4:r=0.778,P=0.000;REM: r=0.575,P=0.000).Conclusions:OSAHS patients have significantly decreased blood serum BDNF levels compared with the control.Nocturnal hypoxia as well as the deprivation of slow wave sleep and REM may lead to the decreased serum BDNF level of OSAHS patients.This decreased blood serum BDNF level may contribute to the cognitive impairment in OSAHS.
基金Supported by The Health and Labor Sciences Research Grants(Comprehensive Research on Disability,Health,and Welfare H21-kokoro-002)(H.K.)the Core Research for Evolutional Science and Technology Program,CREST,Japan Science and Technology Agency(JST)(T.N.,N.A.and H.K.)+3 种基金the Naito Foundation(N.A)the Takeda Science Foundation(T.N.)a grant from Grant-in-Aid for Scientific Research(B),(JSPS KAKENHI)(T.N.),No.24300139Grant-in-Aid for Challenging Exploratory Research(JSPS KAKENHI)(T.N.)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan,No.25640019
文摘Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia.
基金funded by a grant from Jilin Province Development and Reform Commission of China,No.JF2012C008-3Jilin Province Industrial Innovation Special Fund Project of China,No.JF2016C050-2the Joint Project between Jilin University and Jilin You-bang Pharmaceutical Co.Ltd.,No.2015YX323
文摘Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf) and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV) or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.
文摘BACKGROUND: It has been confirmed that brain-derived neurotrophic factor (BDNF) can promote the proliferation of neural stem cells (NSCs) and protect neuron-like cells in vitro. However, its effect on endogenous NSCs in vivo is still unclear. OBJECTIVE: To evaluate whether BDNF can induce the endogenous NSCs to proliferate and differentiate into the neurons in the mice model of cerebral infarction. DESIGN: A synchronal controlled observation. SETTINGS: Department of Neurology, Microbiology Division of the Department of Laboratory, Tianjin First Central Hospital; Howard Florey Institute, Medical College, the University of Melbourne. MATERIALS: Twenty-four pure breed C57BL/6J mice at the age of 10 weeks old (12 males and 12 females) were divided into saline control group and BDNF-treated group, 6 males and 6 females in each group. METHODS: The experiments were performed at the University of Melbourne from July 2004 to February 2005. ① The left middle cerebral artery (MCA) was ligated in both groups to establish models of cerebral infarction and the Matsushita measuring method was used to monitor the blood flow of the lesioned region supplied by MCA. 75% reduction of blood flow should be reached in the lesioned region. ② At 24 hours after infarction, mice in the BDNF-treated group were administrated with BDNF, which was slowly delivered using an ALZET osmium pump design. BDNF was dissolved in saline at the dosage of 500 mg/kg and injected into the pump, which could release the solution consistently in the following 28 days. The mice in the saline control group accepted the same volume of saline at 24 hours after infarction. ③ The Rotarod function test began at 1 week preoperatively, the time stayed on Rotarod was recorded. The mice were tested once a day till the end of the experiment. At 4 weeks post cerebral infarction, double labeling of Nestin and GFAP, BIH tubulin and CNPase immunostaining was performed to observe the differentiation directions of the re-expressed endogenous NSCs, and the percentages of the cells differentiated into astrocytes, neurons and oligodendrocytes were calculated. MAIN OUTCOME MEASURES: ① The differentiation directions of the re-expressed endogenous NSCs, and the percentage of the cells differentiated into astrocytes, neurons and oligodendrocytes.② Comparison of motor function between the two groups. RESULTS: All the 24 pure C57BL/6J mice were involved in the analysis of results. ①Positively expressed endogenous NSCs appeared in the mice of both groups, and they mainly distributed around the focus of lesion, as well as the contralateral side. The expressed cells in the BDNF-treated group were obviously more than those in the saline control group. ②Activations of endogenous NSCs: At 4 weeks after infarction, re-expressions of endogenous NSCs appeared in both groups. The number of the re-expressed cells in the BDNF-treated group was about 4.2 times higher than that in the saline control group. The percentage of the cells differentiated into neurons in the BDNF-treated group was significantly higher than that in the saline control group (36%, 15%), the percentage of the cells differentiated into astrocytes was lower than that in the saline control group (54%, 77%), whereas the percentage of the cells differentiated into oligodendrocytes was similar to that in the saline control group (10%, 8%). ③ Results of motor functional test: Compared with before cerebral infarction, the mice in both groups manifested as obvious decrease in motor function at 1 week after infarction, whereas the recovery of motor function in the BDNF-treated group was significantly superior to that in the saline control group at 2, 3 and 4 weeks (P 〈 0.01). CONCLUSION: BDNF can promote the proliferation of endogenous NSCs in the brain of mice with cerebral infarction, it can decrease the differentiation rate of astrocytes, and increase the differentiation rate of neurons. BDNF has small influence on the differentiation of endogenous NSCs into oligodendrocytes, which was not benefit for the recovery of neural axon. Endogenous NSCs may improve the motor function of mice through the above pathways.
基金supported by the Science and Technology Department of Jiangxi Province(No.20141BBG70036)
文摘Urinary brain-derived neurotrophic factor(BDNF), an ubiquitous neurotrophin, was found to rise in patients with benign prostatic hyperplasia(BPH). We hypothesized that the urinary level of BDNF could be a potential biomarker for lower urinary tract symptoms(LUTS) in patients with BPH. Totally, 76 patients with BPH-caused LUTS and 32 male control subjects without BPH were enrolled. International Prostate Symptom Score(IPSS) was applied to assess the symptom severity of LUTS. Urodynamic tests were performed for the diagnosis of underlying detrusor overactivity(DO) in the patients with BPH. Urine samples were collected from all subjects. Urinary BDNF levels were measured using enzyme-linked immunosorbent assays and normalized by urinary creatinine(Cr) levels. Seventy-six BPH patients were divided into moderate LUTS group(n=51, 720) according to the IPSS. Of the 76 BPH patients, DO was present in 34(44.7%) according to the urodynamic test. The urinary BDNF/Cr levels were significantly higher in BPH patients with moderate LUTS(8.29±3.635, P〈0.0001) and severe LUTS(11.8±6.44, P〈0.0001) than normal controls(1.71±0.555). Patients with severe LUTS tended to have higher urinary BDNF/Cr levels than patients with moderate LUTS(11.8±6.44 vs. 8.29±3.635, P=0.000). The conditions of BPH with LUTS correlated with elevated urinary BDNF levels, and urinary BDNF levels were even higher in BPH-DO patients. The results of this study have provided evidence to suggest that urinary BDNF level test could evaluate the severity of LUTS in BPH patients, and BDNF level can be used as a biomarker
基金Supported by Center for the Study of Traumatic Stress,Department of Psychiatry,Uniformed Services University of the Health Sciences
文摘Brain-derived neurotrophic factor(BDNF), which regulates neuronal survival, growth differentiation, and synapse formation, is known to be associated with depression and post-traumatic stress disorder(PTSD). However, the molecular mechanism for those mental disorders remains unknown. Studies have shown that BDNF is associated with PTSD risk and exaggerated startle reaction(a major arousal manifestation of PTSD) in United States military service members who were deployed during the wars in Iraq and Afghanistan. The frequency of the Met/Met in BDNF gene was greater among those with PTSD than those without PTSD. Among individuals who experienced fewer lifetime stressful events, the Met carriers have significantly higher total and startle scores on the PTSD Checklist than the Val/Val carriers. In addition, subjects with PTSD showed higher levels of BDNF in their peripheral blood plasma than the non-probable-PTSD controls. Increased BDNF levels and startle response were observed in both blood plasma and brain hippocampus by inescapable tail shock in rats. In this paper, we reviewed these data to discuss BDNF as a potential biomarker for PTSD risk and its possible roles in the onset of PTSD.
基金the grant from Natural Foundation of Shaanxi Province, No.2006C240
文摘BACKGROUND: Accumulated evidence indicates an important role for hippocampal dendrite atrophy in development of depression, while brain-derived neurotrophic factor (BDNF) participates in hippocampal dendrite growth. OBJECTIVE: To discuss the role of BDNF and neuronal nitric oxide synthase (nNOS) in chronic and unpredictable stress-induced depression and the pathogenesis of depression. DESIGN, TIME AND SETTING: Randomized, controlled animal experiment. The experiment was carded out from October 2006 to May 2007 at the Department of Animal Physiology, College of Life Science, Shaanxi Normal University. MATERIALS: Thirty-seven male Sprague-Dawley rats weighing 250-300 g at the beginning of the experiment were obtained from Shaanxi Provincial Institute of Traditional Chinese Medicine (Xi'an, China). BDNF antibody and nNOS antibody were provided by Santa Cruz (USA). K252a (BDNF inhibitor) and 7-NI (nNOS inhibitor) were provided by Sigma (USA). METHODS: Animals were randomly divided into five groups: Control group, chronic unpredicted mild stress (CUMS) group, K252a group, K252a+7-NI group and 7-NI+CUMS group. While the Control, K252a and K252a+7-NI groups of rats not subjected to stress had free access to food and water, other groups of rats were subjected to nine stressors randomly applied for 21 days, with each stressor applied 2-3 times. On days 1, 7, 14 and 21 during CUMS, rats received microinjection of 1 μL of physiological saline in the Control and CUMS groups, 1 ~ L of K252a in the K252a group, 1 μL of K252a and 7-NI in the K252a+7-NI group, and 1 μL of 7-NI in the 7-NI+CUMS group. We observed a variety of alterations in sucrose preference, body weight change, open field test and forced swimming test, and observed the expression of BDNF and nNOS in rat hippocampus by immunohistochemistry; MAIN OUTCOME MEASURES: ① A variety.of behavioral alterations of rats; ② The expression of BDNF and nNOS in rat hippocampus. RESULTS: Compared with the Control group, the behavior of the CUMS rats was significantly depressed, the expression of BDNF decreased (P 〈 0.01) but the expression of nNOS increased (P 〈 0.01). The behavior of rats given intra-hippocampal injection of BDNF inhibitor was significantly depressed and the expression of nNOS was significantly increased (P 〈 0.01). Intra-hippocampal injections of an nNOS inhibitor reversed the depression-like behavioral changes induced by CUMS or intra-hippocampal injection of BDNF inhibitor. CONCLUSION: CUMS induced a decrease in expression of BDNF and an increase in expression of NO in the hippocampus, which may lead to depression.
文摘The effect of transcranial magnetic stimulation (TMS) on the neurological functional recovery and expression of c-Fos and brain-derived neurotrophic factor (BDNF) of the cerebral cortex in rats with cerebral infarction was investigated. Cerebral infarction models were established by using left middle cerebral artery occlusion (MCAO) and were randomly divided into a model group (n=40) and a TMS group (n=40). TMS treatment (2 times per day, 30 pulses per time) with a frequency of 0.5 Hz and magnetic field intensity of 1.33 Tesla was carried out in TMS group after MCAO. Modified neurological severity score (NSS) were recorded before and 1, 7, 14, 21, and 28 day(s) after MCAO. The expression of c-Fos and BDNF was immunohistochemically detected 1, 7, 14, 21, and 28 day(s) after infarction respectively. Our results showed that a significant recovery of NSS (P〈0.05) was found in animals treated by TMS on day 7, 14, 21, and 28 as compared with the animals in the model group. The positive expression of c-Fos and BDNF was detected in the cortex surrounding the infarction areas, while the expression of c-Fos and BDNF increased significantly in TMS treatment group in comparison with those in model group 7, 14, 21, and 28 days (P〈0.05) and 7 14, 21 days (P〈0.01) after infarction, respectively. It is concluded that TMS has therapeutic effect on cerebral infarction and this may have something to do with TMS's ability to promote the expression of c-Fos and BDNF of the cerebral cortex in rats with cerebral infarction.
文摘Traumatic brain injury(TBI) is a major health problem worldwide.Following primary mechanical insults,a cascade of secondary injuries often leads to further neural tissue loss.Thus far there is no cure to rescue the damaged neural tissue.Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration.The neurotrophin brain-derived neurotrophic factor(BDNF) has significant effect in both aspects,promoting neuronal survival,synaptic plasticity and neurogenesis.Recently,the flavonoid 7,8-dihydroxyflavone(7,8-DHF),a small Trk B agonist that mimics BDNF function,has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI.Compared to BDNF,7,8-DHF has a longer half-life and much smaller molecular size,capable of penetrating the blood-brain barrier,which makes it possible for non-invasive clinical application.In this review,we summarize functions of the BDNF/Trk B signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.
基金Supported by a Grant from the Health Department of Jilin Province,No. 2000029
文摘BACKGROUND:Studies have demonstrated that brain-derived neurotrophic factor (BDNF) has a dual effect on epilepsy. However, the relationship between epilepsy-induced brain injury and BDNF remains poorly understood.OBJECTIVE:According to ultrastructural and molecular parameters, to detect the degree of neuronal injury and BDNF expression changes at different brain regions and different kindling times to determine the effects of BDNF on epilepsy-induced brain injury.DESIGN, TIME AND SETTING:A randomized, controlled, animal experiment based on neuropathology and molecular biology was performed at the Department of Physiology and Department of Pathology, Basic Medical College of Jilin University in 2003.MATERIALS:UltraSensitiveTM SP kit for immunohistochemistry (Fuzhou Maxim Biotechnology, China), BDNF antibody (concentrated type, Wuhan Boster Biological Technology, China), JEM-1000SX transmission electron microscopy (JEOL, Japan), and BH-2 light microscope (Olympus, Japan) were used in the present study.METHODS:Wistar rats were randomly assigned to control (n = 6), sham-surgery (n = 6), and model (n = 60) groups. The control group rats were not treated; an electrode was embedded into the amygdala in rats from the sham-surgery and model groups; an amygdala kindling epilepsy model was established in the model group.MAIN OUTCOME MEASURES:Pathological changes in the temporal lobe and hippocampus were observed by light and electron microscopy at 1, 3, 7, 14, and 21 days following kindling, and BDNF expression in the various brain regions was determined by immunohistochemistry.RESULTS:In the model group, temporal lobe cortical and hippocampal neurons were swollen and the nuclei were laterally deviated. There were also some apoptotic neurons 3 days after kindling. The nucleoli disappeared and the nuclei appeared broken or lysed, as well as slight microglia hyperplasia, at 7 days. Electron microscopic observation displayed chromatin aggregation in the nuclei and slight mitochondrion swelling 3 days after kindling. Injury changes were aggravated at 7 days, characterized by broken cytoplasmic membrane and pyknosis. With the development of seizure, the number of BDNF-positive neurons in the hippocampus and temporal lobe increased and peaked at 7 days. Moreover, hippocampal and cortical temporal lobe injury continued. Following termination of electrical stimulation after 7 days of kindling, BDNF expression decreased, but continued to be expressed, up to 21 days of kindling. In addition, the number of temporal and hippocampal BDNF-positive neurons was greater than the control group.CONCLUSION:Brain injury and BDNF expression peaked at 7 days after kindling, and hippocampal changes were significant.
文摘AIM To assess the relationship of brain-derived neurotrophic factor(BDNF) with cognitive impairment in patients with type 2 diabetes. METHODS The study included 40 patients with diabetes mellitus type 2(DM2), 37 patients with chronic kidney disease in hem dialysis hemodialysis therapy(HD) and 40 healthy subjects. BDNF in serum was quantified by ELISA. The Folstein Mini-Mental State Examination was used to evaluate cognitive impairment.RESULTS The patients with DM2 and the patients in HD were categorized into two groups, with cognitive impairment and without cognitive impairment. The levels of BDNF showed significant differences between patients with DM2(43.78 ± 9.05 vs 31.55 ± 10.24, P = 0.005). There were no differences between patients in HD(11.39 ± 8.87 vs 11.11 ± 10.64 P = 0.77); interestingly, ferritin levels were higher in patients with cognitive impairment(1564 ± 1335 vs 664 ± 484 P = 0.001). The comparison of BDNF values, using a Kruskal Wallis test, between patients with DM2, in HD and healthy controls showed statistical differences(P < 0.001).CONCLUSION Low levels of BDNF are associated with cognitive impairment in patients with DM2. The decrease of BDNF occurs early and progressively in patients in HD.
文摘BACKGROUND: Previous studies have shown that nerve regeneration factor (NRF) provides neuroprotective effects. However, the neuroprotective effects on retinal ganglion cells in an animal model of glaucoma remain uncertain. OBJECTIVE: To determine the neuroprotective effects of NRF on retinal ganglion cells in a rabbit model of acute hyper-intraocular pressure and to compare the effects on brain-derived neurotrophic factor (BDNF). DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at Jiangsu Provincial Key Laboratory of Neural Regeneration from September 2006 to August 2007. MATERIALS: Sterone, a major component of NRF, was provided by the Key Laboratory of Neural Regeneration, Nantong University in China; BDNF was provided by BioDesign Inc., USA. METHODS: A total of 24 healthy rabbits were randomly assigned to NRF, BDNF, and phosphate buffered saline groups, with 8 rabbits per group. The left eyes were considered normal controls, and acute hyper-intraocular pressure was induced in the right eyes via anterior chamber perfusion. The right camera vitrea bulbi was injected with 4.5 μg NRF, 3.75 μg BDNF, or 5 μL 0.1 mol/L phosphate buffered saline, respectively. MAIN OUTCOME MEASURES: Retinal ganglion cells were reverse-labeled using horseradish peroxidase to quantify cell density at 2, 4, and 6 mm from the optic disc edge. RESULTS: NRF increased the number of surviving retinal ganglion cells at the optic disc edge (P 〈 0.01 or P 〈 0.05). The density of surviving retinal ganglion cells decreased with increasing distance from the optic disc. The number of retinal ganglion cells in the BDNF group was similar to the NRF group (P 〉 0.05). At 2, 4, and 6 mm away from the optic disc edge, there was no significant difference in retinal ganglion cell density between NRF and BDNF groups (P〉 0.05). CONCLUSION: NRF provided protection to retinal ganglion cells in a rabbit model of acute hyper-intraocular pressure, Le., NRF enhanced the survival rate of retinal ganglion cells. The neuroprotective effect was similar to BDNF.