BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 ...BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injury OBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability. DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006. MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280 g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used. METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3, 6, 12 hours, 1, 2, 4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled. MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method. RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter it gradually decreased. CONCLUSION: MMP-9 expression increases in rat brain tissue after focal cerebral ischemia/reperfusion injury, which correlates with increased permeability of the BBB.展开更多
[Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total...[Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total of 60 healthy adult male Sprague-Dawley rats were selected. They were evenly and randomly divided into sham group, model group, edaravone group (12 mg/kg) and SDF group (360 mg/kg), and administered intragastrically and intraperitoneally. The middle cerebral artery of each rat was blocked by suture-occluded method to establish a CIRI model. After ischemia for 2 h and reperfusion for 48 h, the pathological injury on the ischemic side was observed by HE staining;the neuron and myelin sheath structure was observed by transmission electron microscopy;the expression of G protein-coupled receptor kinase 2 (GRK2) was preserved by immunohistochemistry;and the transfer of GRK2 was detected by western-blot.[Results] After 48 h of CIRI, the nuclei of the penumbral cortical neurons shrank, the chromatin was unevenly distributed, the nuclear membrane was dissolved and the mitochondria in the cytoplasm were swollen and vacuolated. The myelin layer was disordered. With this change, the distribution of GRK2 subcellular cells in the penumbra of the injured lateral cortex transferred from the cytoplasm to the membrane. SDF can effectively restore neuronal and myelin sheath structural damage and reduce the functional (membrane coupling) expression of GRK2.[Conclusions] GRK2 may be an effective target for SDF to protect the impaired blood-brain barrier (BBB) in CIRI.展开更多
目的探讨姜黄素对大鼠局灶性脑缺血再灌注损伤后的基质金属蛋白酶-9(MMP-9)及MMP-2表达及活性的影响。方法采用线栓法制作大鼠暂时性大脑中动脉栓塞(MCAO)模型,MCAO后1h腹腔注射100mg/kg姜黄素,MCAO2h再灌注22h后处死动物。取患侧或对...目的探讨姜黄素对大鼠局灶性脑缺血再灌注损伤后的基质金属蛋白酶-9(MMP-9)及MMP-2表达及活性的影响。方法采用线栓法制作大鼠暂时性大脑中动脉栓塞(MCAO)模型,MCAO后1h腹腔注射100mg/kg姜黄素,MCAO2h再灌注22h后处死动物。取患侧或对照侧端脑,提取总蛋白,采用Western blot和明胶酶谱分析方法研究MMP-9及MMP-2的表达及活性。结果 Western blot和明胶酶谱分析结果均表明,姜黄素可降低脑缺血再灌注损伤所诱导的MMP-9及MMP-2蛋白的表达及其活性水平。结论姜黄素对脑缺血再灌注损伤的保护作用机制之一可能与抑制了MMP-9及MMP-2蛋白的高表达及活性增高有关。展开更多
基金the Natural Science Foundation of Hunan Province, No. 04JJ6015, 06JJ50062
文摘BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injury OBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability. DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006. MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280 g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used. METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3, 6, 12 hours, 1, 2, 4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled. MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method. RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter it gradually decreased. CONCLUSION: MMP-9 expression increases in rat brain tissue after focal cerebral ischemia/reperfusion injury, which correlates with increased permeability of the BBB.
基金Supported by Foundation of Anhui Academy of Medical Sciences(YKY2018006)
文摘[Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total of 60 healthy adult male Sprague-Dawley rats were selected. They were evenly and randomly divided into sham group, model group, edaravone group (12 mg/kg) and SDF group (360 mg/kg), and administered intragastrically and intraperitoneally. The middle cerebral artery of each rat was blocked by suture-occluded method to establish a CIRI model. After ischemia for 2 h and reperfusion for 48 h, the pathological injury on the ischemic side was observed by HE staining;the neuron and myelin sheath structure was observed by transmission electron microscopy;the expression of G protein-coupled receptor kinase 2 (GRK2) was preserved by immunohistochemistry;and the transfer of GRK2 was detected by western-blot.[Results] After 48 h of CIRI, the nuclei of the penumbral cortical neurons shrank, the chromatin was unevenly distributed, the nuclear membrane was dissolved and the mitochondria in the cytoplasm were swollen and vacuolated. The myelin layer was disordered. With this change, the distribution of GRK2 subcellular cells in the penumbra of the injured lateral cortex transferred from the cytoplasm to the membrane. SDF can effectively restore neuronal and myelin sheath structural damage and reduce the functional (membrane coupling) expression of GRK2.[Conclusions] GRK2 may be an effective target for SDF to protect the impaired blood-brain barrier (BBB) in CIRI.
文摘目的探讨姜黄素对大鼠局灶性脑缺血再灌注损伤后的基质金属蛋白酶-9(MMP-9)及MMP-2表达及活性的影响。方法采用线栓法制作大鼠暂时性大脑中动脉栓塞(MCAO)模型,MCAO后1h腹腔注射100mg/kg姜黄素,MCAO2h再灌注22h后处死动物。取患侧或对照侧端脑,提取总蛋白,采用Western blot和明胶酶谱分析方法研究MMP-9及MMP-2的表达及活性。结果 Western blot和明胶酶谱分析结果均表明,姜黄素可降低脑缺血再灌注损伤所诱导的MMP-9及MMP-2蛋白的表达及其活性水平。结论姜黄素对脑缺血再灌注损伤的保护作用机制之一可能与抑制了MMP-9及MMP-2蛋白的高表达及活性增高有关。