Due to over industrialisation, the environmental pollution problem is becoming increasingly serious, especially in aquatic ecosystems. Compared with traditional physical and chemical detection methods, the use of biol...Due to over industrialisation, the environmental pollution problem is becoming increasingly serious, especially in aquatic ecosystems. Compared with traditional physical and chemical detection methods, the use of biological indicators has become popular. The freshwater planarian Dugesia japonica is distributed extensively in aquatic ecosystems and has been applied to the area of environmental toxicology for its high chemical sensitivity. Moreover, D. japonica also has a powerful regenerative capability in which the injured planarian can regenerate a new brain in 5 days and complete an adult individual remodelling in 14 days. Therefore, it has been used as a new model organism in the field of neuro-regeneration toxicology. In our past study, D. japonica can be used as a biological indicator to detect water pollution. This can provide basic data for the detection of water pollution and provide a warning system in regard to aquatic ecosystems.展开更多
Neurodegeneration is one of the biggest public health problems in modern society. Age-associated neurodegeneration, which is accelerated several-fold in Alzheimer's disease (AD) alone, is not only an enormous socia...Neurodegeneration is one of the biggest public health problems in modern society. Age-associated neurodegeneration, which is accelerated several-fold in Alzheimer's disease (AD) alone, is not only an enormous social and economic burden to the affected in- dividuals and their families, but is also a great scientific challenge. Currently 25-35 million people worldwide suffer from AD, the single largest cause of dementia in middle- to old-aged individuals. These numbers are projected to triple by 2050 if no treatment to prevent or reverse AD is developed.展开更多
Pioneer studies by Ramon y Cajal in the early nineteenth century evidenced that astrocytes are a heterogeneous cell population. The initial division of the glial family proposed by Rudolf Albert von Kolliker and Willi...Pioneer studies by Ramon y Cajal in the early nineteenth century evidenced that astrocytes are a heterogeneous cell population. The initial division of the glial family proposed by Rudolf Albert von Kolliker and William Lloyd Andriezen that separated glia into two groups, fibrous glia and protoplasmic glia, was further refined by Ramon y Cajal,展开更多
Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a p...Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.展开更多
The irretrievable fate of neurons rhetoric for the first half of this dominated the neuroscience century, a position that was fiercely contested and recently debunked by extensive studies carried out in the field of n...The irretrievable fate of neurons rhetoric for the first half of this dominated the neuroscience century, a position that was fiercely contested and recently debunked by extensive studies carried out in the field of neuroregeneration research. The turning point came in the year 1928, when Ramon Y. Cajal's (Lobato, 2008) work suggested that the regenerative capacity of neurons, though limited, could exist beyond their physical be- ing and depended on the environment surrounding them. That the manipulation of the restrictive environment surrounding the neuron could aid the regenerative process was conclusively established by Aguayo and colleagues (Richardson et al., 1980). Since then, various strategies have been employed to target the different phases of regeneration which include: cell-replacement and augmenting endogenous neurogenesis, the use of trophic factors, reversal of the inhibitory cues, and induction of signal- ing pathways that stimulate axon growth and guidance (Horner and Gage. 2000).展开更多
Acupuncture at acupoints can improve the functions of distal organs. Neuropathological studies have shown that electroacupuncture can significantly reduce the infarct volume, and improve the proportions of injured cor...Acupuncture at acupoints can improve the functions of distal organs. Neuropathological studies have shown that electroacupuncture can significantly reduce the infarct volume, and improve the proportions of injured corpus striatum cells and residual cortical cells. Acupuncture-like sense stimulation can activate various conduction pathways that induce changes in nervous system activities.展开更多
In the human brain, white matter makes up about 50% of the brain volume and consumes 43.8% of the brain's total energy budget for resting potential maintenance (Harris and Attwell, 2012). Composed of primarily myel...In the human brain, white matter makes up about 50% of the brain volume and consumes 43.8% of the brain's total energy budget for resting potential maintenance (Harris and Attwell, 2012). Composed of primarily myelinated axons, the white matter is the "highways and subways of the brain" connecting one region to another and trafficking in and out of the grey matter. In the myelinated nerve fibers, layers of myelin sheaths wrap around each axon to provide protection and insulation to the axon and to allow rapid conduction of action potentials. Myelin establishment and maintenance is considered a crucial requirement for fully functional con- nections between neurons in the central nerve system (CNS).展开更多
Axons in the peripheral nervous system(PNS)can regenerate after injury.However,the adult mammalian central nervous system(CNS)loses the intrinsic regrowth ability.No robust axon regeneration occurs spontaneously after...Axons in the peripheral nervous system(PNS)can regenerate after injury.However,the adult mammalian central nervous system(CNS)loses the intrinsic regrowth ability.No robust axon regeneration occurs spontaneously after nerve injury,which was clearly observed by Ramon y Cajal in the early 20^(th) century(1,2).Due to lack展开更多
Breviscapine,extracted from the herb Erigeron breviscapus,is widely used for the treatment of cardiovascular diseases,cerebral infarct,and stroke,but its mechanism of action remains unclear.This study established a ra...Breviscapine,extracted from the herb Erigeron breviscapus,is widely used for the treatment of cardiovascular diseases,cerebral infarct,and stroke,but its mechanism of action remains unclear.This study established a rat model of traumatic brain injury induced by controlled cortical impact,and injected 75 μg breviscapine via the right lateral ventricle.We found that breviscapine significantly improved neurobehavioral dysfunction at 6 and 9 days after injection.Meanwhile,interleukin-6 expression was markedly down-regulated following breviscapine treatment.Our results suggest that breviscapine is effective in promoting neurological behavior after traumatic brain injury and the underlying molecular mechanism may be associated with the suppression of interleukin-6.展开更多
Transplantation of umbilical cord-derived mesenchymal stem cells(UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen(HBO) treatment has long been widely used as an adjuncti...Transplantation of umbilical cord-derived mesenchymal stem cells(UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen(HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid(2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions.展开更多
The prominin-1/CD133 epitope is expressed in craniocerebral trauma in animal models of fluid undifferentiated cells. Studies have reported that percussion injury induces production of a specific stem cell subgroup. It...The prominin-1/CD133 epitope is expressed in craniocerebral trauma in animal models of fluid undifferentiated cells. Studies have reported that percussion injury induces production of a specific stem cell subgroup. It has been hypothesized that fluid percussion injury induces CD133+ cell infiltration in the brain tissue. The present study established a traumatic brain injury model through fluid percussion injury. Immunohistochemical staining showed significantly increased CD133 antigen expression in the rat brain following injury. CD133+ cells were mainly distributed in hippocampal CA1 3 regions, as well as the dentate gyrus and hilus, of the lesioned hemisphere. Occasional cells were also detected in the cortex. In addition, reverse transcription-PCR revealed that no change in CD133 mRNA expression in injured brain tissue. These results suggested that fluid percussion injury induced CD133 antigen expression in the brain tissues as a result of conformational epitope changes, but not transcriptional expression.展开更多
Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain inj...Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.展开更多
Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to t...Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor(Ng R), the paired immunoglobulin-like receptor B(Pir B) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of Ng R and Pir B almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. Pir B participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. Pir B is an inhibitory receptor similar to Ng R, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of Pir B, and concludes that Pir B is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.展开更多
Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able t...Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf) and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV) or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.展开更多
Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain isch...Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method.After 2 hours of ischemia,the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds.This procedure was repeated six times.Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia,and up-regulate acid-sensing ion channel 2a expression at the m RNA and protein level.These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia,which promotes neuronal tolerance to ischemic brain injury.展开更多
With chromium-hematoxylin staining, we found evidence for the existence of novel age-dependent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained t...With chromium-hematoxylin staining, we found evidence for the existence of novel age-dependent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained threadlike structures, which were barely observable in 1-weekold rats, were networked in specific areas of the brain, for example, the lateral lobes and the cerebella, in 4-week-old rats. In 7-week-old rats, those structures were found to have become larger and better networked. With phase contrast microscopy, we found that in 1-week-old rats, chromium-hematoxylin-stained granules were scattered in the same areas of the brain in which the network structures would later be observed in the 4- and 7-week-old rats. Such age-dependent network structures were examined by using optical and transmission electron microscopy, and the following results were obtained. The scattered granules fused into networks with increasing age. Cross-sections of the age-dependent network structures demonstrated heavily-stained basophilic substructures. Transmission electron microscopy revealed the basophilic substructures to be clusters with high electron densities consisting of nanosized particles. We report these data as evidence for the existence of age-dependent network structures in the dura mater, we discuss their putative functions of age-dependent network structures beyond the general concept of the dura mater as a supporting matrix.展开更多
Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in bra...Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong(EX-HN1), Yintang(EX-HN3), Neiguan(PC6), Taixi(KI3), Fenglong(ST40), and Taichong(LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment.展开更多
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized...Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.展开更多
Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury.However,the underlying mechanism is poorly understood.In order to address this is...Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury.However,the underlying mechanism is poorly understood.In order to address this issue,we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves,after stab wound injury to the eye of an adult trout Oncorhynchus mykiss.Heterogenous population of proliferating cells was investigated at 1 week after injury.TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury.After optic nerve injury,apoptotic response was investigated,and mass patterns of cell migration were found.The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells.It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia.At 1 week after optic nerve injury,we observed nerve cell proliferation in the trout brain integration centers:the cerebellum and the optic tectum.In the optic tectum,proliferating cell nuclear antigen(PCNA)-immunopositive radial glia-like cells were identified.Proliferative activity of nerve cells was detected in the dorsal proliferative(matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury.In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity,as evidenced by PCNA immunolabeling.Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture.The present findings suggest that trout can be used as a novel model for studying neuronal regeneration.展开更多
Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role o...Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear.In this study,we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats.Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin.Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery.Post-conditioning comprised three cycles of ischemia/reperfusion.Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion,the structure of the brain was seriously damaged in the experimental rats compared with normal controls.Expression of Bax,interleukin-6,interleukin-8,terminal deoxynucleotidyl transferase d UTP nick end labeling,and cleaved caspase-3 in the brain was significantly increased,while expression of Bcl-2,interleukin-10,and phospho-glycogen synthase kinase 3 beta was decreased.Diabetes mellitus can aggravate inflammatory reactions and apoptosis.Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes.Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glycogen synthase kinase 3 beta.According to these results,glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.展开更多
文摘Due to over industrialisation, the environmental pollution problem is becoming increasingly serious, especially in aquatic ecosystems. Compared with traditional physical and chemical detection methods, the use of biological indicators has become popular. The freshwater planarian Dugesia japonica is distributed extensively in aquatic ecosystems and has been applied to the area of environmental toxicology for its high chemical sensitivity. Moreover, D. japonica also has a powerful regenerative capability in which the injured planarian can regenerate a new brain in 5 days and complete an adult individual remodelling in 14 days. Therefore, it has been used as a new model organism in the field of neuro-regeneration toxicology. In our past study, D. japonica can be used as a biological indicator to detect water pollution. This can provide basic data for the detection of water pollution and provide a warning system in regard to aquatic ecosystems.
基金supported in part by the New York State Office of People with Developmental Disabilities(OPWDD)Zenith Award ZEN-12-241233 from Alzheimer’s Associationa research grant#20121203 from Alzheimer’s Drug Discovery Foundation,New York
文摘Neurodegeneration is one of the biggest public health problems in modern society. Age-associated neurodegeneration, which is accelerated several-fold in Alzheimer's disease (AD) alone, is not only an enormous social and economic burden to the affected in- dividuals and their families, but is also a great scientific challenge. Currently 25-35 million people worldwide suffer from AD, the single largest cause of dementia in middle- to old-aged individuals. These numbers are projected to triple by 2050 if no treatment to prevent or reverse AD is developed.
文摘Pioneer studies by Ramon y Cajal in the early nineteenth century evidenced that astrocytes are a heterogeneous cell population. The initial division of the glial family proposed by Rudolf Albert von Kolliker and William Lloyd Andriezen that separated glia into two groups, fibrous glia and protoplasmic glia, was further refined by Ramon y Cajal,
基金funded by the National Institutes of Health Grant No.NS078710
文摘Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.
基金supported by a grant from the National Institutes of Health-National Center for Complementary and Alternative Medicine (R00AT004197)Start-up Funds from The University of Toledo to Shah ZA
文摘The irretrievable fate of neurons rhetoric for the first half of this dominated the neuroscience century, a position that was fiercely contested and recently debunked by extensive studies carried out in the field of neuroregeneration research. The turning point came in the year 1928, when Ramon Y. Cajal's (Lobato, 2008) work suggested that the regenerative capacity of neurons, though limited, could exist beyond their physical be- ing and depended on the environment surrounding them. That the manipulation of the restrictive environment surrounding the neuron could aid the regenerative process was conclusively established by Aguayo and colleagues (Richardson et al., 1980). Since then, various strategies have been employed to target the different phases of regeneration which include: cell-replacement and augmenting endogenous neurogenesis, the use of trophic factors, reversal of the inhibitory cues, and induction of signal- ing pathways that stimulate axon growth and guidance (Horner and Gage. 2000).
文摘Acupuncture at acupoints can improve the functions of distal organs. Neuropathological studies have shown that electroacupuncture can significantly reduce the infarct volume, and improve the proportions of injured corpus striatum cells and residual cortical cells. Acupuncture-like sense stimulation can activate various conduction pathways that induce changes in nervous system activities.
文摘In the human brain, white matter makes up about 50% of the brain volume and consumes 43.8% of the brain's total energy budget for resting potential maintenance (Harris and Attwell, 2012). Composed of primarily myelinated axons, the white matter is the "highways and subways of the brain" connecting one region to another and trafficking in and out of the grey matter. In the myelinated nerve fibers, layers of myelin sheaths wrap around each axon to provide protection and insulation to the axon and to allow rapid conduction of action potentials. Myelin establishment and maintenance is considered a crucial requirement for fully functional con- nections between neurons in the central nerve system (CNS).
基金supported by National Natural Science Foundation of China [31600839]Guangdong Innovative and Entrepreneurial Research Team Program [2013S046]+1 种基金Shenzhen Peacock Plansupported by Funds of Leading Talents of Guangdong [2013] and Program of Introducing Talents of Discipline to Universities (B14036)
文摘Axons in the peripheral nervous system(PNS)can regenerate after injury.However,the adult mammalian central nervous system(CNS)loses the intrinsic regrowth ability.No robust axon regeneration occurs spontaneously after nerve injury,which was clearly observed by Ramon y Cajal in the early 20^(th) century(1,2).Due to lack
文摘Breviscapine,extracted from the herb Erigeron breviscapus,is widely used for the treatment of cardiovascular diseases,cerebral infarct,and stroke,but its mechanism of action remains unclear.This study established a rat model of traumatic brain injury induced by controlled cortical impact,and injected 75 μg breviscapine via the right lateral ventricle.We found that breviscapine significantly improved neurobehavioral dysfunction at 6 and 9 days after injection.Meanwhile,interleukin-6 expression was markedly down-regulated following breviscapine treatment.Our results suggest that breviscapine is effective in promoting neurological behavior after traumatic brain injury and the underlying molecular mechanism may be associated with the suppression of interleukin-6.
文摘Transplantation of umbilical cord-derived mesenchymal stem cells(UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen(HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid(2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions.
基金supported by the National Natural Science Foundation of China, No. 30772229the National Basic Research Program of China (973 Program), No. 2005CB522600the Science Foundation of Tianjin Bureau of Public Health, No. 2011KZ96
文摘The prominin-1/CD133 epitope is expressed in craniocerebral trauma in animal models of fluid undifferentiated cells. Studies have reported that percussion injury induces production of a specific stem cell subgroup. It has been hypothesized that fluid percussion injury induces CD133+ cell infiltration in the brain tissue. The present study established a traumatic brain injury model through fluid percussion injury. Immunohistochemical staining showed significantly increased CD133 antigen expression in the rat brain following injury. CD133+ cells were mainly distributed in hippocampal CA1 3 regions, as well as the dentate gyrus and hilus, of the lesioned hemisphere. Occasional cells were also detected in the cortex. In addition, reverse transcription-PCR revealed that no change in CD133 mRNA expression in injured brain tissue. These results suggested that fluid percussion injury induced CD133 antigen expression in the brain tissues as a result of conformational epitope changes, but not transcriptional expression.
基金supported by the National Natural Science Foundation of China,No.81401238,81330016,31171020,81172174 and 81270724the grants from Ministry of Education of China,No.313037,20110181130002+2 种基金a grant from State Commission of Science Technology of China,No.2012BAI04B04the grants from Science and Technology Bureau of Sichuan Province of China,No.2012SZ0010,2014FZ0113,2014SZ0149a grant from Clinical Discipline Program(Neonatology)from the Ministry of Health of China,No.1311200003303
文摘Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.
基金supported by the National Natural Science Foundation of China,No.81170577
文摘Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor(Ng R), the paired immunoglobulin-like receptor B(Pir B) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of Ng R and Pir B almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. Pir B participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. Pir B is an inhibitory receptor similar to Ng R, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of Pir B, and concludes that Pir B is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.
基金funded by a grant from Jilin Province Development and Reform Commission of China,No.JF2012C008-3Jilin Province Industrial Innovation Special Fund Project of China,No.JF2016C050-2the Joint Project between Jilin University and Jilin You-bang Pharmaceutical Co.Ltd.,No.2015YX323
文摘Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf) and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV) or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.
文摘Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method.After 2 hours of ischemia,the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds.This procedure was repeated six times.Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia,and up-regulate acid-sensing ion channel 2a expression at the m RNA and protein level.These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia,which promotes neuronal tolerance to ischemic brain injury.
基金supported by Global Ph.D.Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2014H1A2A1020588)by Korea Atomic Energy Research Institute,by a Korean Pharmacopuncture Foundation Grant funded by the Korean Pharmacopuncture Institute(KPI-2014-010)by the grant K13290 of KIOM and by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2013R1A1A2021577)
文摘With chromium-hematoxylin staining, we found evidence for the existence of novel age-dependent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained threadlike structures, which were barely observable in 1-weekold rats, were networked in specific areas of the brain, for example, the lateral lobes and the cerebella, in 4-week-old rats. In 7-week-old rats, those structures were found to have become larger and better networked. With phase contrast microscopy, we found that in 1-week-old rats, chromium-hematoxylin-stained granules were scattered in the same areas of the brain in which the network structures would later be observed in the 4- and 7-week-old rats. Such age-dependent network structures were examined by using optical and transmission electron microscopy, and the following results were obtained. The scattered granules fused into networks with increasing age. Cross-sections of the age-dependent network structures demonstrated heavily-stained basophilic substructures. Transmission electron microscopy revealed the basophilic substructures to be clusters with high electron densities consisting of nanosized particles. We report these data as evidence for the existence of age-dependent network structures in the dura mater, we discuss their putative functions of age-dependent network structures beyond the general concept of the dura mater as a supporting matrix.
基金supported by the National Natural Science Foundation of China,No.81173354a grant from the Science and Technology Plan Project of Guangdong Province of China,No.2013B021800099a grant from the Science and Technology Plan Project of Shenzhen City of China,No.JCYJ20150402152005642
文摘Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong(EX-HN1), Yintang(EX-HN3), Neiguan(PC6), Taixi(KI3), Fenglong(ST40), and Taichong(LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment.
基金supported by the National Natural Science Foundation of China,No.31070758,31271060the Natural Science Foundation of Chongqing in China,No.cstc2013jcyj A10085
文摘Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.
基金supported by a grant from President of Russian Federation (No.MD-4318.2015.4)a grant from Program for Basic Research of the Far East Branch of the Russian Academy of Sciences 2015–2017 (No.15-I-6-116,section Ⅲ)DST-INSPIRE Faculty Grant (No.IFA14-LSBM-104) from the Department of Science and Technology (DST),Government of India
文摘Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury.However,the underlying mechanism is poorly understood.In order to address this issue,we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves,after stab wound injury to the eye of an adult trout Oncorhynchus mykiss.Heterogenous population of proliferating cells was investigated at 1 week after injury.TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury.After optic nerve injury,apoptotic response was investigated,and mass patterns of cell migration were found.The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells.It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia.At 1 week after optic nerve injury,we observed nerve cell proliferation in the trout brain integration centers:the cerebellum and the optic tectum.In the optic tectum,proliferating cell nuclear antigen(PCNA)-immunopositive radial glia-like cells were identified.Proliferative activity of nerve cells was detected in the dorsal proliferative(matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury.In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity,as evidenced by PCNA immunolabeling.Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture.The present findings suggest that trout can be used as a novel model for studying neuronal regeneration.
基金supported by the National Natural Science Foundation of China,No.81471844the Natural Science Foundation of Hubei Province of China,No.2016CFB167the Basic Scientific Research Foundation of Central Universities,No.2042017kf0147
文摘Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear.In this study,we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats.Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin.Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery.Post-conditioning comprised three cycles of ischemia/reperfusion.Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion,the structure of the brain was seriously damaged in the experimental rats compared with normal controls.Expression of Bax,interleukin-6,interleukin-8,terminal deoxynucleotidyl transferase d UTP nick end labeling,and cleaved caspase-3 in the brain was significantly increased,while expression of Bcl-2,interleukin-10,and phospho-glycogen synthase kinase 3 beta was decreased.Diabetes mellitus can aggravate inflammatory reactions and apoptosis.Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes.Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glycogen synthase kinase 3 beta.According to these results,glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.