In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)...In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)and DBSCAN.However,the traditional clustering methods are easily trapped into local optimum.Thus,many evolutionary-based clustering methods have been investigated.Considering the effectiveness of brain storm optimization(BSO)in increasing the diversity while the diversity optimization is performed,in this paper,we propose a new clustering model based on BSO to use the global ability of BSO.In our experiment,we apply the novel binary model to solve the problem.During the period of processing data,BSO was mainly utilized for iteration.Also,in the process of K-means,we set the more appropriate parameters selected to match it greatly.Four datasets were used in our experiment.In our model,BSO was first introduced in solving the clustering problem.With the algorithm running on each dataset repeatedly,our experimental results have obtained good convergence and diversity.In addition,by comparing the results with other clustering models,the BSO clustering model also guarantees high accuracy.Therefore,from many aspects,the simulation results show that the model of this paper has good performance.展开更多
As a new intelligent optimization method,brain storm optimization(BSO)algorithm has been widely concerned for its advantages in solving classical optimization problems.Recently,an evolutionary classification optimizat...As a new intelligent optimization method,brain storm optimization(BSO)algorithm has been widely concerned for its advantages in solving classical optimization problems.Recently,an evolutionary classification optimization model based on BSO algorithm has been proposed,which proves its effectiveness in solving the classification problem.However,BSO algorithm also has defects.For example,large-scale datasets make the structure of the model complex,which affects its classification performance.In addition,in the process of optimization,the information of the dominant solution cannot be well preserved in BSO,which leads to its limitations in classification performance.Moreover,its generation strategy is inefficient in solving a variety of complex practical problems.Therefore,we briefly introduce the optimization model structure by feature selection.Besides,this paper retains the brainstorming process of BSO algorithm,and embeds the new generation strategy into BSO algorithm.Through the three generation methods of global optimal,local optimal and nearest neighbor,we can better retain the information of the dominant solution and improve the search efficiency.To verify the performance of the proposed generation strategy in solving the classification problem,twelve datasets are used in experiment.Experimental results show that the new generation strategy can improve the performance of BSO algorithm in solving classification problems.展开更多
基金supported by Natural Science Foundation of Jiangsu Province(Grant No.BK20141005)by Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.14KJB520025).
文摘In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)and DBSCAN.However,the traditional clustering methods are easily trapped into local optimum.Thus,many evolutionary-based clustering methods have been investigated.Considering the effectiveness of brain storm optimization(BSO)in increasing the diversity while the diversity optimization is performed,in this paper,we propose a new clustering model based on BSO to use the global ability of BSO.In our experiment,we apply the novel binary model to solve the problem.During the period of processing data,BSO was mainly utilized for iteration.Also,in the process of K-means,we set the more appropriate parameters selected to match it greatly.Four datasets were used in our experiment.In our model,BSO was first introduced in solving the clustering problem.With the algorithm running on each dataset repeatedly,our experimental results have obtained good convergence and diversity.In addition,by comparing the results with other clustering models,the BSO clustering model also guarantees high accuracy.Therefore,from many aspects,the simulation results show that the model of this paper has good performance.
基金supported by the National Natural Science Foundation of China(61876089,61403206,61876185,61902281)the opening Project of Jiangsu Key Laboratory of Data Science and Smart Software(No.2019DS302)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20141005)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(14KJB520025)the Engineering Research Center of Digital Forensics,Ministry of Education,and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘As a new intelligent optimization method,brain storm optimization(BSO)algorithm has been widely concerned for its advantages in solving classical optimization problems.Recently,an evolutionary classification optimization model based on BSO algorithm has been proposed,which proves its effectiveness in solving the classification problem.However,BSO algorithm also has defects.For example,large-scale datasets make the structure of the model complex,which affects its classification performance.In addition,in the process of optimization,the information of the dominant solution cannot be well preserved in BSO,which leads to its limitations in classification performance.Moreover,its generation strategy is inefficient in solving a variety of complex practical problems.Therefore,we briefly introduce the optimization model structure by feature selection.Besides,this paper retains the brainstorming process of BSO algorithm,and embeds the new generation strategy into BSO algorithm.Through the three generation methods of global optimal,local optimal and nearest neighbor,we can better retain the information of the dominant solution and improve the search efficiency.To verify the performance of the proposed generation strategy in solving the classification problem,twelve datasets are used in experiment.Experimental results show that the new generation strategy can improve the performance of BSO algorithm in solving classification problems.