Histone deacetylation is a key modulator involved in cell proliferation,apoptosis,and mRNA transcription.However,the effects of histone deacetylation on C17.2 neural stem cells(NSCs)remain unclear.Here,the histone dea...Histone deacetylation is a key modulator involved in cell proliferation,apoptosis,and mRNA transcription.However,the effects of histone deacetylation on C17.2 neural stem cells(NSCs)remain unclear.Here,the histone deacetylase inhibitors nicotinamide and trichostatin A(TSA)were used to determine the role of histone deacetylation on gene transcription in NSCs.The results showed that the mRNA expression of p53,Sox1,Sox2,and Bax were significantly higher in E14.5 NSCs than in C17.2 NSCs.Nestin,a marker gene of neuronal differentiation,did not differ significantly between E14.5 NSCs and C17.2 NSCs.The transcription levels of p53 and Nestin were significantly higher in C17.2 NSCs than in differentiated brain tissues,and the expression of Bax,Sox1,and Sox2 was higher in the olfactory bulb than in other brain tissues.Nicotinamide and TSA treatment decreased the transcription of Sox2,p53,Nestin,and Bax in C17.2 NSCs,although the difference was statistically significant only for Sox2 and Nestin,Sox1 transcription was not detected.These results demonstrated that mRNA expression profiles differ between C17.2 NSCs,E14.5 NSCs,and adult mouse brain tissues,and HDAC inhibitors regulate gene expression by modulating histone acetylation.展开更多
BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is prov...BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity. OBJECTIVE : To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats. DESIGN : A randomized controlled animal experiment. SETTING : Department of Physiology, Xinxiang Medical College MATERIALS: Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant. METHODS : The experiment was carded out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds after alternation, pulsating electric current presented in the base of unsafe area to stimulate rat's feet to run to the safe area. The lighting lasted for 15 seconds as one test. Running from unsafe area to safe area at one time in 10 seconds was justified as successful. Such test was repeated for 10 times for each rat and the successful frequency was recorded. The qualified standard of maze test was that the rat ardved in the safe area g times during 10 experiments. The number of trainings for the qualified standard was used to represent the result of spatial learning. ③ Determination of the content of nNOS in brain tissue: After the Y-maze test, the rats were anaesthetized, and blood was let from the incision on right auricle, transcardially perfused via the left ventricle with about 200 mL saline, then fixed by perfusion of 40 g/L paraformaldehyde. Hippocampal CA1 region, corpus striatum and cerebellum were taken to prepare serial freezing coronal sections. The nNOS contents in the brain regions were determined with the immunohistochemical methods to reflect the changes of nitdc oxide in brain tissue. MAIN OUTCOME MEASURES : The changes of learning and memory ability and the changes of the nNOS contents in the brain tissue of rats with acute alcoholism were observed. RESULTS : One rat in the experimental group was excluded due to its slow reaction to electdc stimulation in the Y-maze test, and the other 17 rats were involved in the analysis of results. ① The training times to reach qualifying standards of Y-maze in the expedmental group was more than that in the control group [(34.33 ±13.04), (27.50±8.79) times, P〈 0.05]. ② Forms and numbers of nNOS positive neurons in brain tissue: It could be observed under light microscope that in the hippocampal CA1 region, there were fewer nNOS positive neurons, which were lightly stained, and the processes were not clear enough; But the numbers of the positive neurons which were deeply stained as huffy were obviously increased in the experimental group, the cell body and cyloplasm of process were evenly stained, but the nucleus was not stained. The nNOS positive neurons in corpus stdatum had similar forms and size in the experimental group and control group. The form of the nNOS positive neurons in cerebellum were similar between the two groups. The numbers of nNOS positive neurons in hippocampal CA1 region and corpus striatum in the expedmental group [(18.22±7.47), (11.38±5.00) cells/high power field] were obviously higher than those in the control group [(10.15±4.24), (6.15±3.69) cells/high power field. The number of nNOS positive neurons in cerebellum had no significant difference between the two groups [(49.56±18.84), (44.43±15.42) cells/high power field, P〉 0.05]. CONCLUSION : Acute alcoholism may impair learning and memory ability, and nitric oxide may be involved in mediating the neurotoxic role of ethanol.展开更多
BACKGROUND: The implantation of released chemotherapeutic drugs, which takes biodegradable polymer as vector, into the tumor site can get high concentration and release the drug for a long time, it can directly act on...BACKGROUND: The implantation of released chemotherapeutic drugs, which takes biodegradable polymer as vector, into the tumor site can get high concentration and release the drug for a long time, it can directly act on the tumor cells, and reduce the general toxicity. OBJECTIVE: To explore the in vitro and in vivo course of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) sustained-release from BCNU-loaded polylactide (PLA) microspheres (MS) and location in rat brain tissue. DESIGN: A repetitive measurement. SETTING:Central Pharmacy, General Hospital of Chinese People’s Armed Police Forces. MATERIALS: Thirty male SD rats were used. PLA (Mr5000, batch number: KSL8377) was produced by Wako Pure Chemical Inc.,Ltd. (Japan); BCNU (batch number: 021121) by Tianjin Jinyao Amino Acid Co., Ltd.; BCNU-PLA-MS was prepared by the method of solvent evaporation and pressed into tablets (10 mg/tablet). High-performance liquid chromatography (HPLC) Agilent 1100 (USA); LS9800 liquid-scintillation radiometric apparatus (Beckman). Chromatographic conditions: Elite Hypersil ODS2 C18 chromatographic column (5 μm, 4.6 mm×150 mm); Mobile phase: methanol: water (50:50), flow rate was 1.0 mL per minute, wave length of ultraviolet detection was 237 nm, and the inlet amount of samples was 10 μL. METHODS: The experiments were carried out in the experimental animal center of the General Hospital of Chinese Armed Police from May 2004 to July 2005. ① In vitro BCNU-PLA-MS release test: BCNU-PLA-MS was prepared by the method of solvent evaporation, then placed in 0.1 mol/L phosphate buffered solution (PBS, pH 7.4, 37 ℃), part of MS were taken out at 1, 2, 3, 7, 10 and 15 days respectively, and the rest amount of BCNU in MS was determined by HPLC, then the curve of BCNU-PLA-MS release was drawn. ②In vivo BCNU-PLA-MS release and distribution test: The rats were anesthetized, then BCNU-PLA-MS were implanted to the site 1 mm inferior to the cortex of frontal lobe. Five rats were killed postoperatively at 4 hours, 1, 2, 3, 7 and 15 days, the residual MS was removed from the brain tissue. The rest amount of BCNU was determined with HLPC, and the curve of BCNU-PLA-MS release was drawn as compared with the amount of BCNU in the implanted tablets. Besides, brain tissues (1 g) at the implanted side and the contralateral one were obtained respectively, blood sample (0.5 mL) was also collected, 3H-BCNU was counted radioactively in radioactive liquid flash solution. The distributions of BCNU-PLA-MS in normal rat brain tissue and serum were detected. The analysis of variance was applied to compare the intergroup differences of the measurement data. MAIN OUTCOME MEASURES: ① Characteristics of BCNU-PLA-MS release in phosphate buffered solution (PBS) and rat brain tissue; ② Distributions of BCNU-PLA-MS in normal rat brain tissue and serum. RESULTS: ① Release of BCNU-PLA-MS in PBS and rat brain tissue: The BCNU released from BCNU-PLA-MS could be sustained for over 2 weeks both in PBS and brain tissue. In PBS, the released rate of BCNU was over 15% at 24 hours, nearly 50% at 72 hours and over 90% at 15 days. In brain tissue, the released rate was 8% at 4 hours, 16% at 24 hours, 60% at 72 hours, respectively, and BCNU could be sustained released for over 15 days. ② Distributions of BCNU-PLA-MS in normal rat brain tissue and serum: The concentrations of BCNU in the ipsilateral brain tissue were 6 to 70 times higher than those in the contralateral one. The concentrations of BCNU in the ipsilateral brain tissue were obviously higher than those in serum and contralateral brain tissue (F =103.47, P < 0.01). CONCLUSION: BCNU-PLA-MS can increase the drug concentration in targeted brain tissue, decrease that in the non-targeted brain tissue, reduce general toxic and side effects, and have good releasing function.展开更多
BACKGROUND: The mechanism of intracerebral hemorrhage (ICH)-induced hemorrhagic brain injury is very complicated, involving the position-occupying effect of cephalophyma, ischemic factors, the toxic effect of hematoma...BACKGROUND: The mechanism of intracerebral hemorrhage (ICH)-induced hemorrhagic brain injury is very complicated, involving the position-occupying effect of cephalophyma, ischemic factors, the toxic effect of hematoma components, the destruction of blood-brain barrier, etc. The expression and effect of hemeoxygenase-1 (HO-1) in the cerebrovascular disease has been paid close attention. OBJECTIVE: To observe the expression of HO-1 and change of superoxide dismutase (SOD) in the peri-hematomal brain tissue of rats following ICH. DESIGN: Randomized controlled animal experiment. SETTING: Department of Neurology, Yijishan Hospital Affiliated to Wannan Medical College. MATERIALS: Forty healthy male SD rats, of clean grade, weighing from 250 to 300 g, were provided by Qinglongshan Animal Farm of Nanjing. The involved 40 rats were randomized into sham-operation group (n =5) and ICH group (n =35), and ICH group was divided into 7 subgroups with 5 rats in each: ICH 6, 12, 24, 48, 72, 100 and 168 hours groups. Rabbit anti-rat HO-1 immunohistochemial kit ( Boster Co., Ltd., Wuhan) and SOD kit (Jiancheng Bioengineering Institute, Nanjing)were used in this experiment. METHODS: This experiment was carried out in the Department of Neurology, Yijishan Hospital Affiliated to Wannan Medical College Between April and July 2005. In the ICH group: Autologous blood of rats was injected into the head of caudate nucleus to create ICH animal models. In the sham-operation group, the same amount of normal saline was injected into the head of caudate nucleus of rats. The brains of rats in each group were harvested at different time points. The hematoma-side brain tissue was cut open in the coronal plane taking hematomal region as center, and the posterior part was fixed with 100 g/L neutral formaldehyde. 100 mg brain tissue was taken from anterior part. The number of positive cells in HO-1 and SOD activity in peri-hematomal brain tissue at different time after ICH were detected by immunohistochemical method and xanthine oxidation method respectively. MAIN OUTCOME MEASURES: ① The expression of HO-1 in the peri-hematomal brain tissue of rats in two groups following ICH.② The expression of SOD activity in the peri-hematomal brain tissue of rats in two groups following ICH. RESULTS: ①The number of HO-1 positive cells in the peri-hematomal brain tissue of rats in two groups following ICH 6, 12, 24, 48, 72, 120 and 168 hours was (11.03±2.01),(16.47±2.98),(25.50±5.65),(51.57±7.05),(47.33±4.73),(26.57±5.12),(7.63±2.17) cells/high-fold visual field , respectively; The number of HO-1 positive cells in the ICH 12-120 hours groups was significantly higher than that of sham-operation group [(6.07±1.85)cells/high-fold visual field, P < 0.01]; The HO-1 positive cells were the most in the ICH 48 hours group and were still expressed a little in the ICH 168 hours group. ② The SOD in the brain tissue of rats at ICH 6, 12, 24, 48, 72, 120 and 168 hours was (404.46±8.14),(396.84±10.97),(387.74±5.32),(356.21±9.27),(307.95±10.15),(357.48±11.28) and (402.98±7.23) kNU/g, respectively; The SOD activity of ICH 12 to 120 hours groups was significantly lower than that of sham-operation group [(415.47±11.44) kNU/g,P < 0.01], and that of ICH 72 hours group was the lowest. There was no significant difference of SOD activity between ICH 168 hours group and sham-operation group (P > 0.05). CONCLUSION: Following ICH, the expression of HO-1 in peri-hematomal brain tissue of rats in two groups is obviously increased, but the antioxidant ability of brain tissue is decreased. The changes of both maybe play an important role in the formation of ICH-induced hemorrhagic brain injury.展开更多
BACKGROUND: Nitric oxide synthase (NOS) inhibrtors have been widely used to investigate the role of NO on cerebral ischemic injury, but the results are controversial. Moreover, it has been considered to aggravate t...BACKGROUND: Nitric oxide synthase (NOS) inhibrtors have been widely used to investigate the role of NO on cerebral ischemic injury, but the results are controversial. Moreover, it has been considered to aggravate the ischemic neuronal damage with the release of excessively excitatory amino acids (EAA) during cerebral ischemia. On the other hand, some inhibitory amino acid is suggested to be important for the neuronal protection against ischemic brain damage. Our study has recently showed that treatment with the NOS inhibitor NG-nitro-L-arginine (L-NA) reduced focal cerebral ischemic damage. The effect of L-NA on the contents of excitatory and inhibitory amino acid in the rat brain following cerebral ischemia is still unclear. OBJECTIVE: By evaluating the effect of NOS inhibitor, L-NA on the contents of aspartate, glutamate, glycine and γ-aminobutyric acid (GABA) in striatum, hippocampus and cortex in the rat brain following cerebral ischemia respectively, to investigate the beneficial effect of L-NA on cerebral ischemic injury and the possible mechanism. DESIGN: A randomized and controlled experiment SETTING : Department of Pharmacology, Hebei Academy of Medical Sciences MATERIALS: A total of 42 male healthy SD rats (grade Ⅱ, weighting 250-300 g) were provided by the Experimental Animal Center of Hebei Province (Certification: 04036). Aspartate, glutamate, glycine, GABA, L-NA and 2,3,5-triphenyltetrazolium chloride (TTC) were obtained from Sigma Chemicals Co, St Louis, MO, USA. HPLC-ultraviolet detector system consisted of Agilent 1100 HPLC. METHODS: The experiment was carried out in Department of Pharmrcology, Hebei Academy of Medical Sciences from June 2005 to June 2006. Rats were randomly divided into three groups: sham-operated group (n = 6), ischemic group (n = 18), L-NA group (n = 18). The model of focal cerebral ischemia in rat was prepared with intraluminal line occlusion methods. In sham-operated rats, the external carotid artery was surgically prepared, but the filament was not inserted. Each group was further divided into 3 subgroups (n = 6 for each): drugs were administrated at 2, 6 and 12 hours after the middle cerebral artery occlusion (MCAO) respectively. L-NA (20 mg/kg, ip) was administrated, twice a day, for 3 consecutive days. Same volume of normal saline was administrated in ischemic and sham operation groups. The changes of infarcted volume and the contents of amino acids were respectively assayed. Image analysis software was used for the measurement of the infarcted area. The results were expressed as a percentage of the infarcted volume of cerebral/volume of whole brain (IV%) in order to control for edema formation. The contents of aspartate, glutamate, glycine and GABA in striatum, hippocampus and cortex in the rat brain following cerebral ischemia were respectively measured by HPLC method. All data were analyzed with one-way ANOVA and Dunnett's test. MAIN OUTCOME MEASURES: (1) The volume of cerebral infarction; (2) The contents of aspartate, glutamate glycine and GABA in brain tissue after cerebral ischemia. RESULTS : All 42 rats were involved in the final analysis. (1) Infarcted volume: Volume was 0 in sham-operated group. When L-NA was administrated at 2 and 6 hours after MCAO, the infarcted volume was (20.13±3.59)% and (23.12±5.84)% in L-NA group, which was not similar to that in ischemic group [(22.10±3.98)%, (25.38± 5.37)%, P〉 0.05]. However, the infarcted volume was markedly decreased compared with that of ischemic group when L-NA was administrated at 12 hours after MCAO [(26.11±3.55)% and (37.15±3.58)%, P 〈 0.01]. Changes of amino acid content: At 2 and 6 hours after ischemia, the contents of aspartate, glutamate, glycine and GABA in striatum, hippocampus and cortex in ischemic group were significantly increased compared with those in sham-operated group ( P〈 0.05-0.01). However, contents in L-NA group were similar to those in ischemic group (P 〉 0.05). At 12 hours after ischemia, the contents of aspartate [(0.21 ±0.06), (0.36±0.05), (0.29±0.12) mg/g] and glutamate [(0.55±0.06), (0.78±0.10), (0.52±0.10) mg/g] in striatum, hippocampus and cortex in L-NA group were significantly decreased compared with those in ischemic group [(0.49±0.17), (0.63± 0.03), (0.51±0.15) mg/g; (0.98±0.30), (1.15±0.15), (0.93±0.15) mg/g, P〈 0.05-0.01]. Glycine in hippocampus was (0.40±0.07) mg/g, which was higher than that in ischemic group [(0.21±0.07) mg/g, P 〈 0.05]. GABA in striatum, hippocampus and cortex was (0.93±0.10), (0.62±0.12) and (0.81 ±0.10) mg/g, respectively, which was higher than that in ischemic group [(0.60±0.08), (0.37±0.17), (0.59±0.10) mg/g, P 〈 0.05-0.01]. CONCLUSION : It may be concluded that L-NA have beneficial effect on ischemic cerebral injury in ischemic later stage in rats. The possible mechanism is that L-NA can decrease the contents of aspartate and glutamate, increase the contents of glycine and GABA.展开更多
BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the s...BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats. OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal tria SETTING : Department of Anesthesiology, the Medical School Hospital of Qingdao University MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents: homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd., Wuhan). METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal morphology was observed. AQP-4 expression and neuronal apoptosis were measured with immunohistochemical method and TUNEL method respectively. MAIN OUTCOME MEASURES: Water content in brain tissue, neuronal morphology, the number of AQP-4 positive neurons and TUNEL positive neurons in rats of two groups at each time point after injury. RESULTS: Totally 150 rats entered the stage of result analysis. (1) Water content of brain tissue: The water content of brain tissue at each time point after injury in the ketamine-treated group was lower than that in the control group. There were very significant differences in water content at 12 and 24 hours after injury respectively between ketamine-treated group and control group [(77.34±2.35)% vs. (82.31 ±1.48)%; (78.01 ±2.21 )% vs. (83.86±2.37)%, t=-4.001 6,4.036 7, both P 〈 0.01]. (2) Neuronal morphology: Pathological changes in traumatic region and peripheral region of injury in the ketamine-treated group were significantly lessened, and necrotic and apoptotic cells in the ketamine-treated group were also significantly reduced as compared with control group. (3) AQP-4 expression: AQP-4 positive neurons at each time point in the ketamine-treated group were significantly less than those in the control group. There were very significant differences in AQP-4 expression at 12 and 24 hours after injury between ketamine-treated group and control group [(34.17±4.74) /visual field vs. (43.42±5.65) /visual field;(40.83±3.17) /visual field vs. (58.88±6.23) /visual field,t=3.966 3,8.165 7, both P〈 0.01]. (4) Neuronal apoptosis: TUNEL positive neurons at each time point in the ketamine-treated group were less than those in the control group. There were very significant differences in the neuronal apoptosis at 12 and 24 hours after injury between ketamine-treated group and control group [(26.25±3.04) /visual field vs. (32.75±4.39) /visual field; (29.33± 4.02) /visual field vs. (39.83±5.61) /visual field,t=-3.849 3,5.169 2,both P 〈 0.01]. CONCLUSION: Ketamine can reduce brain edema, AQP-4 expression and neuronal apoptosis following brain injury in rats, and has obvious therapeutic effect on brain injury, especially at 12 and 24 hours after injury.展开更多
The quest to find novel therapeutics for mental and neurological disorders has been hindered by the lack of access to l ive human brain samples and relevant experimental models. Conventional 2D human pluripotent st...The quest to find novel therapeutics for mental and neurological disorders has been hindered by the lack of access to l ive human brain samples and relevant experimental models. Conventional 2D human pluripotent stem cell-derived neuronal cultures and animal models do not ful ly recapitulate many endogenous human biochemical processes and disease phenotypes. Currently, the majority of candidate drugs obtained from preclinical testing in conventional systems does not usually translate into success and have a high failure rate in clinical trials. Recent advancements in bioengineering and stem cell technologies have resulted in three-dimensional brain-like tissues, such as oragnoids, which better resemble endogenous tissue and are more physiologically relevant than monolayer cultures. These brain-like tissues can bridge the gap between existing models and the patient, and may revolutionize the field of translational neuroscience. Here, we discuss utilities and challenges of using stem cell-derived human brain tissues in basic research and pharmacotherapy.展开更多
Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function...Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.展开更多
Neuro myelitis optica spectrum disorder(NMOSD) is an inflammatory demyelinating disease of the central nervous system.However,whether and how cortical changes occur in NMOSD with normal-appearing brain tissue,or wheth...Neuro myelitis optica spectrum disorder(NMOSD) is an inflammatory demyelinating disease of the central nervous system.However,whether and how cortical changes occur in NMOSD with normal-appearing brain tissue,or whether any cortical changes correlate with clinical chara cteristics,is not completely clear.The current study recruited 43 patients with NMOSD who had normal-appearing brain tissue and 45 healthy controls matched for age,sex,and educational background from December 2020 to February 2022.A surface-based morphological analysis of high-resolution T1-weighted structural magnetic resonance images was used to calculate the cortical thickness,sulcal depth,and gyrification index.Analysis showed that cortical thickness in the bilate ral rostral middle frontal gyrus and left superior frontal gyrus was lower in the patients with NMOSD than in the control participants.Subgroup analysis of the patients with NMOSD indicated that compared with those who did not have any optic neuritis episodes,those who did have such episodes exhibited noticeably thinner cortex in the bilateral cuneus,superior parietal co rtex,and pericalcarine co rtex.Correlation analysis indicated that co rtical thickness in the bilateral rostral middle frontal gyrus was positively correlated with scores on the Digit Symbol Substitution Test and negatively correlated with scores on the Trail Making Test and the Expanded Disability Status Scale.These results are evidence that cortical thinning of the bilateral regional frontal cortex occurs in patients with NMOSD who have normal-appearing brain tissue,and that the degree of thinning is correlated with clinical disability and cognitive function.These findings will help im prove our understanding of the imaging chara cteristics in NMOSD and their potential clinical significance.展开更多
Chara cterized by positive symptoms(such as changes in behavior or thoughts,including delusions and hallu cinations),negative symptoms(such as apathy,anhedonia,and social withdrawal),and cognitive impairments,schizoph...Chara cterized by positive symptoms(such as changes in behavior or thoughts,including delusions and hallu cinations),negative symptoms(such as apathy,anhedonia,and social withdrawal),and cognitive impairments,schizophrenia is a chro nic,severe,and disabling mental disorder with late adolescence or early adulthood onset,Antipsychotics are the most commonly used drugs to treat schizophrenia,but those currently in use do not fully reverse all three types of symptoms characte rizing this condition.Schizophrenia is frequently misdiagnosed,resulting in a delay of or inappropriate treatment.Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of schizophrenia.The recent studies reviewed included microRNA profiling in blood-and urine-based materials and nervous tissue mate rials.From the studies that had validated the preliminary findings,potential candidate biomarkers for schizophrenia in adults could be miR-22-3p,-30e-5p,-92a-3p,-148b-5p,-181a-3p,-181a-5p,-181b-5p,-199 b-5p,-137 in whole blood,and miR-130b,-193a-3p in blood plasma.Antipsychotic treatment of schizophrenia patients was found to modulate the expression of certain microRNAs including miR-130b,-193a-3p,-132,-195,-30e,-432 in blood plasma.Further studies are warranted with adolescents and young adults having schizophrenia and consideration should be given to using animal models of the disorder to investigate the effect of suppressing or overexpressing specific microRNAs.展开更多
Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarke...Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarkers in bipolar disorder and found 18 original research articles on studies performed with human patients and published from January 2011 to June 2023. These studies included microRNA profiling in bloodand brain-based materials. From the studies that had validated the preliminary findings,potential candidate biomarkers for bipolar disorder in adults could be miR-140-3p,-30d-5p,-330-5p,-378a-5p,-21-3p,-330-3p,-345-5p in whole blood, miR-19b-3p,-1180-3p,-125a-5p, let-7e-5p in blood plasma, and miR-7-5p,-23b-5p,-142-3p,-221-5p,-370-3p in the blood serum. Two of the studies had investigated the changes in microRNA expression of patients with bipolar disorder receiving treatment. One showed a significant increase in plasma miR-134 compared to baseline after 4 weeks of treatment which included typical antipsychotics, atypical antipsychotics, and benzodiazepines. The other study had assessed the effects of prescribed medications which included neurotransmitter receptorsite binders(drug class B) and sedatives, hypnotics, anticonvulsants, and analgesics(drug class C) on microRNA results. The combined effects of the two drug classes increased the significance of the results for miR-219 and-29c with miR-30e-3p and-526b* acquiring significance. MicroRNAs were tested to see if they could serve as biomarkers of bipolar disorder at different clinical states of mania, depression, and euthymia. One study showed that upregulation in whole blood of miR-9-5p,-29a-3p,-106a-5p,-106b-5p,-107,-125a-3p,-125b-5p and of miR-107,-125a-3p occurred in manic and euthymic patients compared to controls, respectively, and that upregulation of miR-106a-5p,-107 was found for manic compared to euthymic patients. In two other studies using blood plasma,downregulation of miR-134 was observed in manic patients compared to controls, and dysregulation of miR-134,-152,-607,-633,-652,-155 occurred in euthymic patients compared to controls. Finally, microRNAs such as miR-34a,-34b,-34c,-137, and-140-3p,-21-3p,-30d-5p,-330-5p,-378a-5p,-134,-19b-3p were shown to have diagnostic potential in distinguishing bipolar disorder patients from schizophrenia or major depressive disorder patients, respectively. Further studies are warranted with adolescents and young adults having bipolar disorder and consideration should be given to using animal models of the disorder to investigate the effects of suppressing or overexpressing specific microRNAs.展开更多
Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditio...Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditional and exercise therapy.Methods:Four samples were analyzed:older control(OC),older exercise(OE),younger control(YC),and younger exercise(YE).Single-cell RNA sequencing was used to distinguish cellular subtypes through their biomarker profiles.Data visualization included violin and t-SNE plots to illustrate biomarker expression across cell clusters such as oligodendrocytes,microglia,and astrocytes.Additionally,BV2 cells were exposed to amyloid-beta fragments to simulate Alzheimer’s disease,assessing the impact of exercise-induced cellular responses.Results:Distinct cellular subtypes were identified:oligodendrocytes(MBP,St18),microglia(Dock8),and astrocytes(Aqp4,Gpc5).Sample OE was predominantly oligodendrocytes,while YE had more astrocytes,inhibitory neurons,and Canal-Retzius cells.YC showed a significant presence of Olfm3+ganglion neurons.ZEB1 gene knockout revealed changes in SMAD family gene expression,which regulate ferroptosis.Oxidative stress levels were also evaluated.Conclusion:This profiling enhances our understanding of brain cellular functions and interactions,potentially informing targeted therapies in neurological research.Exercise may influence brain cell immune responses and cell death pathways by regulating specific gene expressions,offering new insights for treating neuroinflammation and degeneration.展开更多
In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vagina delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the ...In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vagina delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 pM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 tJM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.展开更多
Previous studies have shown that vagus nerve stimulation can improve the prognosis of trau- matic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimul...Previous studies have shown that vagus nerve stimulation can improve the prognosis of trau- matic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain ex- plosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-a, interleukin-l~ and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-a and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-a, interleukin-1 β and interleukin-10 in the serum and brain tissue.展开更多
Objective To explore the effects of nonylphenol on brain gene expression profiles in F1 generation rats by microarray technique. Methods mRNA was extracted from the brain of 2-day old F1 generation male rats whose F0 ...Objective To explore the effects of nonylphenol on brain gene expression profiles in F1 generation rats by microarray technique. Methods mRNA was extracted from the brain of 2-day old F1 generation male rats whose F0 female generation was either exposed to nonylphenol or free from nonylphenol exposure, and then it was reversely transcribed to cDNA labeled with cy5 and cy3 fluorescence. Subsequently, cDNA probes were hybridized to two BiostarR-40S cDNA gene chips and fluorescent signals of cy5 and cy3 were scanned and analyzed. Results Two genes were differentially down-regulated. Conclusion Nonylphenol may disturb the neuroendocrine function of male rats when administered perinatally.展开更多
Tissue plasminogen activator (tPA) use in the treatment of isch- emic stroke: tPA is a serine protease that catalyzes the breakdown of blood dots. Because of its thrombolytic properties, tPA is used to treat specif...Tissue plasminogen activator (tPA) use in the treatment of isch- emic stroke: tPA is a serine protease that catalyzes the breakdown of blood dots. Because of its thrombolytic properties, tPA is used to treat specific types of stroke, including ischemia, but is contra- indicated for treatment of hemorrhagic stroke or head trauma. Although a life saving and powerful 'dot buster', tPA has a short therapeutic window. When administered outside of this prescribed timeframe, research suggests that tPA can produce neurotoxic ef- fects in the brain, due in part to activation of several signalling pro- cesses associated with cell apoptosis, degradation of the extracel- lular matrix, and increase in the permeability of the neurovascular unit (Yepes et al., 2009). Concerted research has been dedicated to- ward understanding the mechanisms mediating the impact of tPA on the brain, using both in vivo and in vitro animal models.展开更多
Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summon...Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summoned to repair damage to the mother's brain. If this is confirmed, it would open up new and safer avenues of treatment for brain damage caused by strokes and neural diseases. In this study, we aimed to investigate whether a baby's stem cells can enter the maternal brain during pregnancy. Deceased patients who had at least one male offspring and no history of abortion and blood transfusion were included in this study. DNA was extracted from brain tissue samples of deceased women using standard phenol-chloroform extraction and ethanol precipitation methods. Genomic DNA was screened by quantitative fluorescent-polymerase chain reaction amplification together with short tandem repeat markers specific to the Y chromosome, and 13, 18, 21 and X. Any foreign DNA residues that could be used to interpret the presence of fetal stem cells in the maternal brain were monitored. Results indicated that fetal stem cells can not cross the blood-brain barrier to enter the maternal brain.展开更多
Hyperbaric oxygenation(HBO)treatment protocols utilize low pressures up to 3ATA.Higher pressures may induce side effects such as convulsions due to brain toxicity.The optimal HBO pressure allowing for maximal therapy ...Hyperbaric oxygenation(HBO)treatment protocols utilize low pressures up to 3ATA.Higher pressures may induce side effects such as convulsions due to brain toxicity.The optimal HBO pressure allowing for maximal therapy and minimal toxicity is under controversy.However,it can be evaluated by monitoring oxygen delivery,saturation,and consumption.In this study,the monitoring system fixed on the rats’brain cortex included a time-sharing fluorometer-reflectometer for monitoring mitochondrial NADH and hemoglobin oxygenation(HbO_(2))combined with Laser Doppler Flowmetry(LDF)for blood-flow monitoring.Rats were located in a hyperbaric chamber and exposed to different pressures.The HBO pressure caused an increase in HbO_(2)and a decrease in NADH in proportion to the increase in hyperbaric pressure,up to a nearly maximum effect at 2.5ATA.At 6ATA,15 minutes before convulsions started,blood volume and NADH started to increase,while tissue O_(2)supply by hemoglobin remained stable.Oxygen pool includes oxygen dissolved in the plasma and also bounded to hemoglobin.Above 2.5ATA,hemoglobin is fully saturated and the oxygen pool nourishment derives only from the oxygen dissolved in the plasma,exceeding the physiological ability for autoregulation;hence,homeostasis is disturbed and convulsions appear.This information is vital because pressures around 2.5ATA–3ATA are standard clinically applied pressures used to treat most of the pathophysiological problems considering the potential benefit which must be balanced against the potential toxicity.This study enables,for the first time,to evaluate the oxygenation level of hemoglobin in the microcirculation.Furthermore,our study showed that additional oxygen pressure(above 2.5ATA)caused brain oxygen toxicity within a short variable period of time after the pressure elevation.展开更多
Objective Electroacupuncture (EA) has been shown to have therapeutic effect on chronic fatigue syndrome. But its action has not been made clear. Methods After the rats of EA group were fixed in an animal cage, bilat...Objective Electroacupuncture (EA) has been shown to have therapeutic effect on chronic fatigue syndrome. But its action has not been made clear. Methods After the rats of EA group were fixed in an animal cage, bilateral Shènshū (肾俞 BL23) were punctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for one minute. And then the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves, frequency of 3 Hz for 30 minutes, and amplitude: positive: 50 V, negative: 25 V. Electrocupuncture was given once a day, continuously for 5 days. The rats of normal control group were not punctured and stimulated. The rats of all groups were killed for collecting blood and brain tissue on the next day after the final treatment. Carnitine in serum and brain tissue was determined. Results Oarnitine contents in serum of EA group and of normal control group were 5.10±0.50 μmol/L and 2.17±0.46 μmol/L, respectively. Oarnitine contents in brain tissue of elctroacupuncture group and of normal control group were 44.66 ± 2.67 μmol/L and 24.05 ± 3.65 μmol/L, respectively. Oarnitine levels in serum and brain of EA group were significantly higher than those of normal control group. (P〈0.001) Conclusion This report presented that carnitine in serum and brain is increased by EA, suggesting that EA may affect energy metabolism and may have effects on fatigue.展开更多
Objective: To study the mechanisms of acupuncture in treatment of acute cerebral infarction. Methods: 90 SD rats were randomly divided into normal control group (n=10), model group (n=40) and electroacupuncture (EA) g...Objective: To study the mechanisms of acupuncture in treatment of acute cerebral infarction. Methods: 90 SD rats were randomly divided into normal control group (n=10), model group (n=40) and electroacupuncture (EA) group (n=40). Shuigou (GV 26), bilateral Neiguan (PC 6) and Zusanli (ST 36) were stimulated with EA for 20 min. Acute cerebral infarction (ACI) was produced by blocking blood flow of the cerebral middle artery. Changes of β EP content in the brain tissue after ACI and EA were detected by radioimmunoassay (RIA). Results: 24 hour after ACI, plasma β EP content increased significantly to 1120.41±33.79 ng/L from 401.72±266.47 ng/L before ACL. While after acupuncutre, the increased β EP content lowered evidently in comparison with that of model group but was close to that of normal group. Conclusion: Acupuncture may adjust the neuroendocrine disturbance in rats with acute cerebral infarction to minimize the injury of the brain tissue.展开更多
基金supported by the Key Scientific Research Projects of Higher Education Institutions in Henan Province under grant number 19A180021the Young Key Teachers Training Program of Yellow River Conservancy Technical Institute+2 种基金the Campus Scientific and Research Fund Project of Yellow River Conservancy Technical Institute under grant number 2017QNKY012the Research Projects of Employment and Entrepreneurship of Secondary and Higher Education Institutions in Henan Province under grant number JYB2018534National Natural Sciences Foundation of China under grant number 31070954.
文摘Histone deacetylation is a key modulator involved in cell proliferation,apoptosis,and mRNA transcription.However,the effects of histone deacetylation on C17.2 neural stem cells(NSCs)remain unclear.Here,the histone deacetylase inhibitors nicotinamide and trichostatin A(TSA)were used to determine the role of histone deacetylation on gene transcription in NSCs.The results showed that the mRNA expression of p53,Sox1,Sox2,and Bax were significantly higher in E14.5 NSCs than in C17.2 NSCs.Nestin,a marker gene of neuronal differentiation,did not differ significantly between E14.5 NSCs and C17.2 NSCs.The transcription levels of p53 and Nestin were significantly higher in C17.2 NSCs than in differentiated brain tissues,and the expression of Bax,Sox1,and Sox2 was higher in the olfactory bulb than in other brain tissues.Nicotinamide and TSA treatment decreased the transcription of Sox2,p53,Nestin,and Bax in C17.2 NSCs,although the difference was statistically significant only for Sox2 and Nestin,Sox1 transcription was not detected.These results demonstrated that mRNA expression profiles differ between C17.2 NSCs,E14.5 NSCs,and adult mouse brain tissues,and HDAC inhibitors regulate gene expression by modulating histone acetylation.
基金the Natural Sci-ence Foundation of HenanProvince, No. 984021100 agrant from Key Subject Fund ofXinxiang Medical College
文摘BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity. OBJECTIVE : To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats. DESIGN : A randomized controlled animal experiment. SETTING : Department of Physiology, Xinxiang Medical College MATERIALS: Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant. METHODS : The experiment was carded out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds after alternation, pulsating electric current presented in the base of unsafe area to stimulate rat's feet to run to the safe area. The lighting lasted for 15 seconds as one test. Running from unsafe area to safe area at one time in 10 seconds was justified as successful. Such test was repeated for 10 times for each rat and the successful frequency was recorded. The qualified standard of maze test was that the rat ardved in the safe area g times during 10 experiments. The number of trainings for the qualified standard was used to represent the result of spatial learning. ③ Determination of the content of nNOS in brain tissue: After the Y-maze test, the rats were anaesthetized, and blood was let from the incision on right auricle, transcardially perfused via the left ventricle with about 200 mL saline, then fixed by perfusion of 40 g/L paraformaldehyde. Hippocampal CA1 region, corpus striatum and cerebellum were taken to prepare serial freezing coronal sections. The nNOS contents in the brain regions were determined with the immunohistochemical methods to reflect the changes of nitdc oxide in brain tissue. MAIN OUTCOME MEASURES : The changes of learning and memory ability and the changes of the nNOS contents in the brain tissue of rats with acute alcoholism were observed. RESULTS : One rat in the experimental group was excluded due to its slow reaction to electdc stimulation in the Y-maze test, and the other 17 rats were involved in the analysis of results. ① The training times to reach qualifying standards of Y-maze in the expedmental group was more than that in the control group [(34.33 ±13.04), (27.50±8.79) times, P〈 0.05]. ② Forms and numbers of nNOS positive neurons in brain tissue: It could be observed under light microscope that in the hippocampal CA1 region, there were fewer nNOS positive neurons, which were lightly stained, and the processes were not clear enough; But the numbers of the positive neurons which were deeply stained as huffy were obviously increased in the experimental group, the cell body and cyloplasm of process were evenly stained, but the nucleus was not stained. The nNOS positive neurons in corpus stdatum had similar forms and size in the experimental group and control group. The form of the nNOS positive neurons in cerebellum were similar between the two groups. The numbers of nNOS positive neurons in hippocampal CA1 region and corpus striatum in the expedmental group [(18.22±7.47), (11.38±5.00) cells/high power field] were obviously higher than those in the control group [(10.15±4.24), (6.15±3.69) cells/high power field. The number of nNOS positive neurons in cerebellum had no significant difference between the two groups [(49.56±18.84), (44.43±15.42) cells/high power field, P〉 0.05]. CONCLUSION : Acute alcoholism may impair learning and memory ability, and nitric oxide may be involved in mediating the neurotoxic role of ethanol.
文摘BACKGROUND: The implantation of released chemotherapeutic drugs, which takes biodegradable polymer as vector, into the tumor site can get high concentration and release the drug for a long time, it can directly act on the tumor cells, and reduce the general toxicity. OBJECTIVE: To explore the in vitro and in vivo course of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) sustained-release from BCNU-loaded polylactide (PLA) microspheres (MS) and location in rat brain tissue. DESIGN: A repetitive measurement. SETTING:Central Pharmacy, General Hospital of Chinese People’s Armed Police Forces. MATERIALS: Thirty male SD rats were used. PLA (Mr5000, batch number: KSL8377) was produced by Wako Pure Chemical Inc.,Ltd. (Japan); BCNU (batch number: 021121) by Tianjin Jinyao Amino Acid Co., Ltd.; BCNU-PLA-MS was prepared by the method of solvent evaporation and pressed into tablets (10 mg/tablet). High-performance liquid chromatography (HPLC) Agilent 1100 (USA); LS9800 liquid-scintillation radiometric apparatus (Beckman). Chromatographic conditions: Elite Hypersil ODS2 C18 chromatographic column (5 μm, 4.6 mm×150 mm); Mobile phase: methanol: water (50:50), flow rate was 1.0 mL per minute, wave length of ultraviolet detection was 237 nm, and the inlet amount of samples was 10 μL. METHODS: The experiments were carried out in the experimental animal center of the General Hospital of Chinese Armed Police from May 2004 to July 2005. ① In vitro BCNU-PLA-MS release test: BCNU-PLA-MS was prepared by the method of solvent evaporation, then placed in 0.1 mol/L phosphate buffered solution (PBS, pH 7.4, 37 ℃), part of MS were taken out at 1, 2, 3, 7, 10 and 15 days respectively, and the rest amount of BCNU in MS was determined by HPLC, then the curve of BCNU-PLA-MS release was drawn. ②In vivo BCNU-PLA-MS release and distribution test: The rats were anesthetized, then BCNU-PLA-MS were implanted to the site 1 mm inferior to the cortex of frontal lobe. Five rats were killed postoperatively at 4 hours, 1, 2, 3, 7 and 15 days, the residual MS was removed from the brain tissue. The rest amount of BCNU was determined with HLPC, and the curve of BCNU-PLA-MS release was drawn as compared with the amount of BCNU in the implanted tablets. Besides, brain tissues (1 g) at the implanted side and the contralateral one were obtained respectively, blood sample (0.5 mL) was also collected, 3H-BCNU was counted radioactively in radioactive liquid flash solution. The distributions of BCNU-PLA-MS in normal rat brain tissue and serum were detected. The analysis of variance was applied to compare the intergroup differences of the measurement data. MAIN OUTCOME MEASURES: ① Characteristics of BCNU-PLA-MS release in phosphate buffered solution (PBS) and rat brain tissue; ② Distributions of BCNU-PLA-MS in normal rat brain tissue and serum. RESULTS: ① Release of BCNU-PLA-MS in PBS and rat brain tissue: The BCNU released from BCNU-PLA-MS could be sustained for over 2 weeks both in PBS and brain tissue. In PBS, the released rate of BCNU was over 15% at 24 hours, nearly 50% at 72 hours and over 90% at 15 days. In brain tissue, the released rate was 8% at 4 hours, 16% at 24 hours, 60% at 72 hours, respectively, and BCNU could be sustained released for over 15 days. ② Distributions of BCNU-PLA-MS in normal rat brain tissue and serum: The concentrations of BCNU in the ipsilateral brain tissue were 6 to 70 times higher than those in the contralateral one. The concentrations of BCNU in the ipsilateral brain tissue were obviously higher than those in serum and contralateral brain tissue (F =103.47, P < 0.01). CONCLUSION: BCNU-PLA-MS can increase the drug concentration in targeted brain tissue, decrease that in the non-targeted brain tissue, reduce general toxic and side effects, and have good releasing function.
文摘BACKGROUND: The mechanism of intracerebral hemorrhage (ICH)-induced hemorrhagic brain injury is very complicated, involving the position-occupying effect of cephalophyma, ischemic factors, the toxic effect of hematoma components, the destruction of blood-brain barrier, etc. The expression and effect of hemeoxygenase-1 (HO-1) in the cerebrovascular disease has been paid close attention. OBJECTIVE: To observe the expression of HO-1 and change of superoxide dismutase (SOD) in the peri-hematomal brain tissue of rats following ICH. DESIGN: Randomized controlled animal experiment. SETTING: Department of Neurology, Yijishan Hospital Affiliated to Wannan Medical College. MATERIALS: Forty healthy male SD rats, of clean grade, weighing from 250 to 300 g, were provided by Qinglongshan Animal Farm of Nanjing. The involved 40 rats were randomized into sham-operation group (n =5) and ICH group (n =35), and ICH group was divided into 7 subgroups with 5 rats in each: ICH 6, 12, 24, 48, 72, 100 and 168 hours groups. Rabbit anti-rat HO-1 immunohistochemial kit ( Boster Co., Ltd., Wuhan) and SOD kit (Jiancheng Bioengineering Institute, Nanjing)were used in this experiment. METHODS: This experiment was carried out in the Department of Neurology, Yijishan Hospital Affiliated to Wannan Medical College Between April and July 2005. In the ICH group: Autologous blood of rats was injected into the head of caudate nucleus to create ICH animal models. In the sham-operation group, the same amount of normal saline was injected into the head of caudate nucleus of rats. The brains of rats in each group were harvested at different time points. The hematoma-side brain tissue was cut open in the coronal plane taking hematomal region as center, and the posterior part was fixed with 100 g/L neutral formaldehyde. 100 mg brain tissue was taken from anterior part. The number of positive cells in HO-1 and SOD activity in peri-hematomal brain tissue at different time after ICH were detected by immunohistochemical method and xanthine oxidation method respectively. MAIN OUTCOME MEASURES: ① The expression of HO-1 in the peri-hematomal brain tissue of rats in two groups following ICH.② The expression of SOD activity in the peri-hematomal brain tissue of rats in two groups following ICH. RESULTS: ①The number of HO-1 positive cells in the peri-hematomal brain tissue of rats in two groups following ICH 6, 12, 24, 48, 72, 120 and 168 hours was (11.03±2.01),(16.47±2.98),(25.50±5.65),(51.57±7.05),(47.33±4.73),(26.57±5.12),(7.63±2.17) cells/high-fold visual field , respectively; The number of HO-1 positive cells in the ICH 12-120 hours groups was significantly higher than that of sham-operation group [(6.07±1.85)cells/high-fold visual field, P < 0.01]; The HO-1 positive cells were the most in the ICH 48 hours group and were still expressed a little in the ICH 168 hours group. ② The SOD in the brain tissue of rats at ICH 6, 12, 24, 48, 72, 120 and 168 hours was (404.46±8.14),(396.84±10.97),(387.74±5.32),(356.21±9.27),(307.95±10.15),(357.48±11.28) and (402.98±7.23) kNU/g, respectively; The SOD activity of ICH 12 to 120 hours groups was significantly lower than that of sham-operation group [(415.47±11.44) kNU/g,P < 0.01], and that of ICH 72 hours group was the lowest. There was no significant difference of SOD activity between ICH 168 hours group and sham-operation group (P > 0.05). CONCLUSION: Following ICH, the expression of HO-1 in peri-hematomal brain tissue of rats in two groups is obviously increased, but the antioxidant ability of brain tissue is decreased. The changes of both maybe play an important role in the formation of ICH-induced hemorrhagic brain injury.
基金the Natural Sci-ence Foundation of HebeiProvince, No. C2005000840
文摘BACKGROUND: Nitric oxide synthase (NOS) inhibrtors have been widely used to investigate the role of NO on cerebral ischemic injury, but the results are controversial. Moreover, it has been considered to aggravate the ischemic neuronal damage with the release of excessively excitatory amino acids (EAA) during cerebral ischemia. On the other hand, some inhibitory amino acid is suggested to be important for the neuronal protection against ischemic brain damage. Our study has recently showed that treatment with the NOS inhibitor NG-nitro-L-arginine (L-NA) reduced focal cerebral ischemic damage. The effect of L-NA on the contents of excitatory and inhibitory amino acid in the rat brain following cerebral ischemia is still unclear. OBJECTIVE: By evaluating the effect of NOS inhibitor, L-NA on the contents of aspartate, glutamate, glycine and γ-aminobutyric acid (GABA) in striatum, hippocampus and cortex in the rat brain following cerebral ischemia respectively, to investigate the beneficial effect of L-NA on cerebral ischemic injury and the possible mechanism. DESIGN: A randomized and controlled experiment SETTING : Department of Pharmacology, Hebei Academy of Medical Sciences MATERIALS: A total of 42 male healthy SD rats (grade Ⅱ, weighting 250-300 g) were provided by the Experimental Animal Center of Hebei Province (Certification: 04036). Aspartate, glutamate, glycine, GABA, L-NA and 2,3,5-triphenyltetrazolium chloride (TTC) were obtained from Sigma Chemicals Co, St Louis, MO, USA. HPLC-ultraviolet detector system consisted of Agilent 1100 HPLC. METHODS: The experiment was carried out in Department of Pharmrcology, Hebei Academy of Medical Sciences from June 2005 to June 2006. Rats were randomly divided into three groups: sham-operated group (n = 6), ischemic group (n = 18), L-NA group (n = 18). The model of focal cerebral ischemia in rat was prepared with intraluminal line occlusion methods. In sham-operated rats, the external carotid artery was surgically prepared, but the filament was not inserted. Each group was further divided into 3 subgroups (n = 6 for each): drugs were administrated at 2, 6 and 12 hours after the middle cerebral artery occlusion (MCAO) respectively. L-NA (20 mg/kg, ip) was administrated, twice a day, for 3 consecutive days. Same volume of normal saline was administrated in ischemic and sham operation groups. The changes of infarcted volume and the contents of amino acids were respectively assayed. Image analysis software was used for the measurement of the infarcted area. The results were expressed as a percentage of the infarcted volume of cerebral/volume of whole brain (IV%) in order to control for edema formation. The contents of aspartate, glutamate, glycine and GABA in striatum, hippocampus and cortex in the rat brain following cerebral ischemia were respectively measured by HPLC method. All data were analyzed with one-way ANOVA and Dunnett's test. MAIN OUTCOME MEASURES: (1) The volume of cerebral infarction; (2) The contents of aspartate, glutamate glycine and GABA in brain tissue after cerebral ischemia. RESULTS : All 42 rats were involved in the final analysis. (1) Infarcted volume: Volume was 0 in sham-operated group. When L-NA was administrated at 2 and 6 hours after MCAO, the infarcted volume was (20.13±3.59)% and (23.12±5.84)% in L-NA group, which was not similar to that in ischemic group [(22.10±3.98)%, (25.38± 5.37)%, P〉 0.05]. However, the infarcted volume was markedly decreased compared with that of ischemic group when L-NA was administrated at 12 hours after MCAO [(26.11±3.55)% and (37.15±3.58)%, P 〈 0.01]. Changes of amino acid content: At 2 and 6 hours after ischemia, the contents of aspartate, glutamate, glycine and GABA in striatum, hippocampus and cortex in ischemic group were significantly increased compared with those in sham-operated group ( P〈 0.05-0.01). However, contents in L-NA group were similar to those in ischemic group (P 〉 0.05). At 12 hours after ischemia, the contents of aspartate [(0.21 ±0.06), (0.36±0.05), (0.29±0.12) mg/g] and glutamate [(0.55±0.06), (0.78±0.10), (0.52±0.10) mg/g] in striatum, hippocampus and cortex in L-NA group were significantly decreased compared with those in ischemic group [(0.49±0.17), (0.63± 0.03), (0.51±0.15) mg/g; (0.98±0.30), (1.15±0.15), (0.93±0.15) mg/g, P〈 0.05-0.01]. Glycine in hippocampus was (0.40±0.07) mg/g, which was higher than that in ischemic group [(0.21±0.07) mg/g, P 〈 0.05]. GABA in striatum, hippocampus and cortex was (0.93±0.10), (0.62±0.12) and (0.81 ±0.10) mg/g, respectively, which was higher than that in ischemic group [(0.60±0.08), (0.37±0.17), (0.59±0.10) mg/g, P 〈 0.05-0.01]. CONCLUSION : It may be concluded that L-NA have beneficial effect on ischemic cerebral injury in ischemic later stage in rats. The possible mechanism is that L-NA can decrease the contents of aspartate and glutamate, increase the contents of glycine and GABA.
基金the Topic of Science and Technology Department of Qingdao City, No.2005kzd-22
文摘BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats. OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal tria SETTING : Department of Anesthesiology, the Medical School Hospital of Qingdao University MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents: homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd., Wuhan). METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal morphology was observed. AQP-4 expression and neuronal apoptosis were measured with immunohistochemical method and TUNEL method respectively. MAIN OUTCOME MEASURES: Water content in brain tissue, neuronal morphology, the number of AQP-4 positive neurons and TUNEL positive neurons in rats of two groups at each time point after injury. RESULTS: Totally 150 rats entered the stage of result analysis. (1) Water content of brain tissue: The water content of brain tissue at each time point after injury in the ketamine-treated group was lower than that in the control group. There were very significant differences in water content at 12 and 24 hours after injury respectively between ketamine-treated group and control group [(77.34±2.35)% vs. (82.31 ±1.48)%; (78.01 ±2.21 )% vs. (83.86±2.37)%, t=-4.001 6,4.036 7, both P 〈 0.01]. (2) Neuronal morphology: Pathological changes in traumatic region and peripheral region of injury in the ketamine-treated group were significantly lessened, and necrotic and apoptotic cells in the ketamine-treated group were also significantly reduced as compared with control group. (3) AQP-4 expression: AQP-4 positive neurons at each time point in the ketamine-treated group were significantly less than those in the control group. There were very significant differences in AQP-4 expression at 12 and 24 hours after injury between ketamine-treated group and control group [(34.17±4.74) /visual field vs. (43.42±5.65) /visual field;(40.83±3.17) /visual field vs. (58.88±6.23) /visual field,t=3.966 3,8.165 7, both P〈 0.01]. (4) Neuronal apoptosis: TUNEL positive neurons at each time point in the ketamine-treated group were less than those in the control group. There were very significant differences in the neuronal apoptosis at 12 and 24 hours after injury between ketamine-treated group and control group [(26.25±3.04) /visual field vs. (32.75±4.39) /visual field; (29.33± 4.02) /visual field vs. (39.83±5.61) /visual field,t=-3.849 3,5.169 2,both P 〈 0.01]. CONCLUSION: Ketamine can reduce brain edema, AQP-4 expression and neuronal apoptosis following brain injury in rats, and has obvious therapeutic effect on brain injury, especially at 12 and 24 hours after injury.
文摘The quest to find novel therapeutics for mental and neurological disorders has been hindered by the lack of access to l ive human brain samples and relevant experimental models. Conventional 2D human pluripotent stem cell-derived neuronal cultures and animal models do not ful ly recapitulate many endogenous human biochemical processes and disease phenotypes. Currently, the majority of candidate drugs obtained from preclinical testing in conventional systems does not usually translate into success and have a high failure rate in clinical trials. Recent advancements in bioengineering and stem cell technologies have resulted in three-dimensional brain-like tissues, such as oragnoids, which better resemble endogenous tissue and are more physiologically relevant than monolayer cultures. These brain-like tissues can bridge the gap between existing models and the patient, and may revolutionize the field of translational neuroscience. Here, we discuss utilities and challenges of using stem cell-derived human brain tissues in basic research and pharmacotherapy.
文摘Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.
基金Clinical Research Center for Medical Imaging in Hunan Province,No.2020SK4001Science and Technology Innovation Program of Hunan Province,No.2021RC4016Accurate Localization Study of Mild Traumatic Brain Injury Based on Deep Learning Through Multimodal Image and Neural Network,No.2021gfcx05 (all to JL)。
文摘Neuro myelitis optica spectrum disorder(NMOSD) is an inflammatory demyelinating disease of the central nervous system.However,whether and how cortical changes occur in NMOSD with normal-appearing brain tissue,or whether any cortical changes correlate with clinical chara cteristics,is not completely clear.The current study recruited 43 patients with NMOSD who had normal-appearing brain tissue and 45 healthy controls matched for age,sex,and educational background from December 2020 to February 2022.A surface-based morphological analysis of high-resolution T1-weighted structural magnetic resonance images was used to calculate the cortical thickness,sulcal depth,and gyrification index.Analysis showed that cortical thickness in the bilate ral rostral middle frontal gyrus and left superior frontal gyrus was lower in the patients with NMOSD than in the control participants.Subgroup analysis of the patients with NMOSD indicated that compared with those who did not have any optic neuritis episodes,those who did have such episodes exhibited noticeably thinner cortex in the bilateral cuneus,superior parietal co rtex,and pericalcarine co rtex.Correlation analysis indicated that co rtical thickness in the bilateral rostral middle frontal gyrus was positively correlated with scores on the Digit Symbol Substitution Test and negatively correlated with scores on the Trail Making Test and the Expanded Disability Status Scale.These results are evidence that cortical thinning of the bilateral regional frontal cortex occurs in patients with NMOSD who have normal-appearing brain tissue,and that the degree of thinning is correlated with clinical disability and cognitive function.These findings will help im prove our understanding of the imaging chara cteristics in NMOSD and their potential clinical significance.
文摘Chara cterized by positive symptoms(such as changes in behavior or thoughts,including delusions and hallu cinations),negative symptoms(such as apathy,anhedonia,and social withdrawal),and cognitive impairments,schizophrenia is a chro nic,severe,and disabling mental disorder with late adolescence or early adulthood onset,Antipsychotics are the most commonly used drugs to treat schizophrenia,but those currently in use do not fully reverse all three types of symptoms characte rizing this condition.Schizophrenia is frequently misdiagnosed,resulting in a delay of or inappropriate treatment.Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of schizophrenia.The recent studies reviewed included microRNA profiling in blood-and urine-based materials and nervous tissue mate rials.From the studies that had validated the preliminary findings,potential candidate biomarkers for schizophrenia in adults could be miR-22-3p,-30e-5p,-92a-3p,-148b-5p,-181a-3p,-181a-5p,-181b-5p,-199 b-5p,-137 in whole blood,and miR-130b,-193a-3p in blood plasma.Antipsychotic treatment of schizophrenia patients was found to modulate the expression of certain microRNAs including miR-130b,-193a-3p,-132,-195,-30e,-432 in blood plasma.Further studies are warranted with adolescents and young adults having schizophrenia and consideration should be given to using animal models of the disorder to investigate the effect of suppressing or overexpressing specific microRNAs.
文摘Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarkers in bipolar disorder and found 18 original research articles on studies performed with human patients and published from January 2011 to June 2023. These studies included microRNA profiling in bloodand brain-based materials. From the studies that had validated the preliminary findings,potential candidate biomarkers for bipolar disorder in adults could be miR-140-3p,-30d-5p,-330-5p,-378a-5p,-21-3p,-330-3p,-345-5p in whole blood, miR-19b-3p,-1180-3p,-125a-5p, let-7e-5p in blood plasma, and miR-7-5p,-23b-5p,-142-3p,-221-5p,-370-3p in the blood serum. Two of the studies had investigated the changes in microRNA expression of patients with bipolar disorder receiving treatment. One showed a significant increase in plasma miR-134 compared to baseline after 4 weeks of treatment which included typical antipsychotics, atypical antipsychotics, and benzodiazepines. The other study had assessed the effects of prescribed medications which included neurotransmitter receptorsite binders(drug class B) and sedatives, hypnotics, anticonvulsants, and analgesics(drug class C) on microRNA results. The combined effects of the two drug classes increased the significance of the results for miR-219 and-29c with miR-30e-3p and-526b* acquiring significance. MicroRNAs were tested to see if they could serve as biomarkers of bipolar disorder at different clinical states of mania, depression, and euthymia. One study showed that upregulation in whole blood of miR-9-5p,-29a-3p,-106a-5p,-106b-5p,-107,-125a-3p,-125b-5p and of miR-107,-125a-3p occurred in manic and euthymic patients compared to controls, respectively, and that upregulation of miR-106a-5p,-107 was found for manic compared to euthymic patients. In two other studies using blood plasma,downregulation of miR-134 was observed in manic patients compared to controls, and dysregulation of miR-134,-152,-607,-633,-652,-155 occurred in euthymic patients compared to controls. Finally, microRNAs such as miR-34a,-34b,-34c,-137, and-140-3p,-21-3p,-30d-5p,-330-5p,-378a-5p,-134,-19b-3p were shown to have diagnostic potential in distinguishing bipolar disorder patients from schizophrenia or major depressive disorder patients, respectively. Further studies are warranted with adolescents and young adults having bipolar disorder and consideration should be given to using animal models of the disorder to investigate the effects of suppressing or overexpressing specific microRNAs.
文摘Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditional and exercise therapy.Methods:Four samples were analyzed:older control(OC),older exercise(OE),younger control(YC),and younger exercise(YE).Single-cell RNA sequencing was used to distinguish cellular subtypes through their biomarker profiles.Data visualization included violin and t-SNE plots to illustrate biomarker expression across cell clusters such as oligodendrocytes,microglia,and astrocytes.Additionally,BV2 cells were exposed to amyloid-beta fragments to simulate Alzheimer’s disease,assessing the impact of exercise-induced cellular responses.Results:Distinct cellular subtypes were identified:oligodendrocytes(MBP,St18),microglia(Dock8),and astrocytes(Aqp4,Gpc5).Sample OE was predominantly oligodendrocytes,while YE had more astrocytes,inhibitory neurons,and Canal-Retzius cells.YC showed a significant presence of Olfm3+ganglion neurons.ZEB1 gene knockout revealed changes in SMAD family gene expression,which regulate ferroptosis.Oxidative stress levels were also evaluated.Conclusion:This profiling enhances our understanding of brain cellular functions and interactions,potentially informing targeted therapies in neurological research.Exercise may influence brain cell immune responses and cell death pathways by regulating specific gene expressions,offering new insights for treating neuroinflammation and degeneration.
基金supported by the Military Medical Research Program during the 12th Five-Year Plan Period, No.BWS11J002
文摘In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vagina delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 pM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 tJM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.
文摘Previous studies have shown that vagus nerve stimulation can improve the prognosis of trau- matic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain ex- plosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-a, interleukin-l~ and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-a and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-a, interleukin-1 β and interleukin-10 in the serum and brain tissue.
基金the Innovation Fund of Chongqing University of Medical Sciences (No. 200417).
文摘Objective To explore the effects of nonylphenol on brain gene expression profiles in F1 generation rats by microarray technique. Methods mRNA was extracted from the brain of 2-day old F1 generation male rats whose F0 female generation was either exposed to nonylphenol or free from nonylphenol exposure, and then it was reversely transcribed to cDNA labeled with cy5 and cy3 fluorescence. Subsequently, cDNA probes were hybridized to two BiostarR-40S cDNA gene chips and fluorescent signals of cy5 and cy3 were scanned and analyzed. Results Two genes were differentially down-regulated. Conclusion Nonylphenol may disturb the neuroendocrine function of male rats when administered perinatally.
文摘Tissue plasminogen activator (tPA) use in the treatment of isch- emic stroke: tPA is a serine protease that catalyzes the breakdown of blood dots. Because of its thrombolytic properties, tPA is used to treat specific types of stroke, including ischemia, but is contra- indicated for treatment of hemorrhagic stroke or head trauma. Although a life saving and powerful 'dot buster', tPA has a short therapeutic window. When administered outside of this prescribed timeframe, research suggests that tPA can produce neurotoxic ef- fects in the brain, due in part to activation of several signalling pro- cesses associated with cell apoptosis, degradation of the extracel- lular matrix, and increase in the permeability of the neurovascular unit (Yepes et al., 2009). Concerted research has been dedicated to- ward understanding the mechanisms mediating the impact of tPA on the brain, using both in vivo and in vitro animal models.
基金supported by Research Funds of University of ukurova,Turkey
文摘Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summoned to repair damage to the mother's brain. If this is confirmed, it would open up new and safer avenues of treatment for brain damage caused by strokes and neural diseases. In this study, we aimed to investigate whether a baby's stem cells can enter the maternal brain during pregnancy. Deceased patients who had at least one male offspring and no history of abortion and blood transfusion were included in this study. DNA was extracted from brain tissue samples of deceased women using standard phenol-chloroform extraction and ethanol precipitation methods. Genomic DNA was screened by quantitative fluorescent-polymerase chain reaction amplification together with short tandem repeat markers specific to the Y chromosome, and 13, 18, 21 and X. Any foreign DNA residues that could be used to interpret the presence of fetal stem cells in the maternal brain were monitored. Results indicated that fetal stem cells can not cross the blood-brain barrier to enter the maternal brain.
文摘Hyperbaric oxygenation(HBO)treatment protocols utilize low pressures up to 3ATA.Higher pressures may induce side effects such as convulsions due to brain toxicity.The optimal HBO pressure allowing for maximal therapy and minimal toxicity is under controversy.However,it can be evaluated by monitoring oxygen delivery,saturation,and consumption.In this study,the monitoring system fixed on the rats’brain cortex included a time-sharing fluorometer-reflectometer for monitoring mitochondrial NADH and hemoglobin oxygenation(HbO_(2))combined with Laser Doppler Flowmetry(LDF)for blood-flow monitoring.Rats were located in a hyperbaric chamber and exposed to different pressures.The HBO pressure caused an increase in HbO_(2)and a decrease in NADH in proportion to the increase in hyperbaric pressure,up to a nearly maximum effect at 2.5ATA.At 6ATA,15 minutes before convulsions started,blood volume and NADH started to increase,while tissue O_(2)supply by hemoglobin remained stable.Oxygen pool includes oxygen dissolved in the plasma and also bounded to hemoglobin.Above 2.5ATA,hemoglobin is fully saturated and the oxygen pool nourishment derives only from the oxygen dissolved in the plasma,exceeding the physiological ability for autoregulation;hence,homeostasis is disturbed and convulsions appear.This information is vital because pressures around 2.5ATA–3ATA are standard clinically applied pressures used to treat most of the pathophysiological problems considering the potential benefit which must be balanced against the potential toxicity.This study enables,for the first time,to evaluate the oxygenation level of hemoglobin in the microcirculation.Furthermore,our study showed that additional oxygen pressure(above 2.5ATA)caused brain oxygen toxicity within a short variable period of time after the pressure elevation.
文摘Objective Electroacupuncture (EA) has been shown to have therapeutic effect on chronic fatigue syndrome. But its action has not been made clear. Methods After the rats of EA group were fixed in an animal cage, bilateral Shènshū (肾俞 BL23) were punctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for one minute. And then the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves, frequency of 3 Hz for 30 minutes, and amplitude: positive: 50 V, negative: 25 V. Electrocupuncture was given once a day, continuously for 5 days. The rats of normal control group were not punctured and stimulated. The rats of all groups were killed for collecting blood and brain tissue on the next day after the final treatment. Carnitine in serum and brain tissue was determined. Results Oarnitine contents in serum of EA group and of normal control group were 5.10±0.50 μmol/L and 2.17±0.46 μmol/L, respectively. Oarnitine contents in brain tissue of elctroacupuncture group and of normal control group were 44.66 ± 2.67 μmol/L and 24.05 ± 3.65 μmol/L, respectively. Oarnitine levels in serum and brain of EA group were significantly higher than those of normal control group. (P〈0.001) Conclusion This report presented that carnitine in serum and brain is increased by EA, suggesting that EA may affect energy metabolism and may have effects on fatigue.
文摘Objective: To study the mechanisms of acupuncture in treatment of acute cerebral infarction. Methods: 90 SD rats were randomly divided into normal control group (n=10), model group (n=40) and electroacupuncture (EA) group (n=40). Shuigou (GV 26), bilateral Neiguan (PC 6) and Zusanli (ST 36) were stimulated with EA for 20 min. Acute cerebral infarction (ACI) was produced by blocking blood flow of the cerebral middle artery. Changes of β EP content in the brain tissue after ACI and EA were detected by radioimmunoassay (RIA). Results: 24 hour after ACI, plasma β EP content increased significantly to 1120.41±33.79 ng/L from 401.72±266.47 ng/L before ACL. While after acupuncutre, the increased β EP content lowered evidently in comparison with that of model group but was close to that of normal group. Conclusion: Acupuncture may adjust the neuroendocrine disturbance in rats with acute cerebral infarction to minimize the injury of the brain tissue.