As a leading cause for morbidity and mortality in young adults,traumatic brain injury(TBI),along with the poorly understood TBI-related seizures inducing their predispositions,pose a major health and socioeconomic p...As a leading cause for morbidity and mortality in young adults,traumatic brain injury(TBI),along with the poorly understood TBI-related seizures inducing their predispositions,pose a major health and socioeconomic problem in the world(Huang,2013).展开更多
Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to ...Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia.展开更多
Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water,...Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water, among which two groups were concurrently administered by oral gavage once every other day as the low and high Fe treatment group, respectively, for 6 weeks. At the same time, the group only supplied with high Fe was also set as a reference. The animals were decapitated, then brain capillary-rich fraction was isolate from cerebral cortex. Western blot method was used to identify protein expression, and RT-PCR to detect the change of the m RNA. Results Pb exposure significantly increased Pb concentrations in cerebral cortex. Low Fe dose significantly reduced the cortex Pb levels, However, high Fe dose increased the cortex Pb levels. Interestingly, changes of DMT1(IRE) protein in brain capillary-rich fraction were highly related to the Pb level, but those of DMT1(IRE) m RNA were not significantly different. Moreover, the consistent changes in the levels of p-ERK1/2 or IRP1 with the changes in the levels of DMT1(IRE). Conclusion These results suggest that Pb is transported into the brain through DMT1(IRE), and the ERK MAPK pathway is involved in DMT1(IRE)-mediated transport regulation in brain vascular system in vivo.展开更多
Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunot...Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier(BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.展开更多
The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases.The family of ATP-binding c...The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases.The family of ATP-binding cassette(ABC)transporters has been widely studied regarding efflux of medications at blood-central nervous system barriers.These efflux transporters include P-glycoprotein(abcb1),‘breast cancer resistance protein'(abcg2)and the various‘multidrug resistance-associated proteins'(abccs).Understanding which efflux transporters are present at the blood-spinal cord,blood-cerebrospinal fluid and cerebrospinal fluid-spinal cord barriers is necessary to determine their involvement in limiting drug transfer from blood to the spinal cord tissue.Recent developments in the blood-brain barrier field have shown that barrier systems are dynamic and the profile of barrier defenses can alter due to conditions such as age,disease and environmental challenge.This means that a true understanding of ABC efflux transporter expression and localization should not be one static value but instead a range that represents the complex patient subpopulations that exist.In the present review,the blood-central nervous system barrier literature is discussed with a focus on the impact of ABC efflux transporters on:(i)protecting the spinal cord from adverse effects of systemically directed drugs,and(ii)limiting centrally directed drugs from accessing their active sites within the spinal cord.展开更多
文摘As a leading cause for morbidity and mortality in young adults,traumatic brain injury(TBI),along with the poorly understood TBI-related seizures inducing their predispositions,pose a major health and socioeconomic problem in the world(Huang,2013).
基金Supported by The Health and Labor Sciences Research Grants(Comprehensive Research on Disability,Health,and Welfare H21-kokoro-002)(H.K.)the Core Research for Evolutional Science and Technology Program,CREST,Japan Science and Technology Agency(JST)(T.N.,N.A.and H.K.)+3 种基金the Naito Foundation(N.A)the Takeda Science Foundation(T.N.)a grant from Grant-in-Aid for Scientific Research(B),(JSPS KAKENHI)(T.N.),No.24300139Grant-in-Aid for Challenging Exploratory Research(JSPS KAKENHI)(T.N.)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan,No.25640019
文摘Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia.
基金supported by National Natural Science Foundation of China(No.81472478)Medical Science Youth Breeding Project of PLA(13QNP161)
文摘Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water, among which two groups were concurrently administered by oral gavage once every other day as the low and high Fe treatment group, respectively, for 6 weeks. At the same time, the group only supplied with high Fe was also set as a reference. The animals were decapitated, then brain capillary-rich fraction was isolate from cerebral cortex. Western blot method was used to identify protein expression, and RT-PCR to detect the change of the m RNA. Results Pb exposure significantly increased Pb concentrations in cerebral cortex. Low Fe dose significantly reduced the cortex Pb levels, However, high Fe dose increased the cortex Pb levels. Interestingly, changes of DMT1(IRE) protein in brain capillary-rich fraction were highly related to the Pb level, but those of DMT1(IRE) m RNA were not significantly different. Moreover, the consistent changes in the levels of p-ERK1/2 or IRP1 with the changes in the levels of DMT1(IRE). Conclusion These results suggest that Pb is transported into the brain through DMT1(IRE), and the ERK MAPK pathway is involved in DMT1(IRE)-mediated transport regulation in brain vascular system in vivo.
文摘Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier(BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.
文摘The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases.The family of ATP-binding cassette(ABC)transporters has been widely studied regarding efflux of medications at blood-central nervous system barriers.These efflux transporters include P-glycoprotein(abcb1),‘breast cancer resistance protein'(abcg2)and the various‘multidrug resistance-associated proteins'(abccs).Understanding which efflux transporters are present at the blood-spinal cord,blood-cerebrospinal fluid and cerebrospinal fluid-spinal cord barriers is necessary to determine their involvement in limiting drug transfer from blood to the spinal cord tissue.Recent developments in the blood-brain barrier field have shown that barrier systems are dynamic and the profile of barrier defenses can alter due to conditions such as age,disease and environmental challenge.This means that a true understanding of ABC efflux transporter expression and localization should not be one static value but instead a range that represents the complex patient subpopulations that exist.In the present review,the blood-central nervous system barrier literature is discussed with a focus on the impact of ABC efflux transporters on:(i)protecting the spinal cord from adverse effects of systemically directed drugs,and(ii)limiting centrally directed drugs from accessing their active sites within the spinal cord.