Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunot...Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier(BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.展开更多
Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer tre...Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer treatments, via exacerbation of tumor hypoxia, decreased effective drug concentrations within tumors, and immune-related mechanisms. Antiangiogenic therapy can counteract these breast cancer resistance factors by promoting tumor vascular normalization. The combination of antiangiogenic therapy with chemotherapy, targeted therapy, or immunotherapy has emerged as a promising approach for overcoming drug resistance in breast cancer. This review examines the mechanisms associated with angiogenesis and the interactions among tumor angiogenesis, the hypoxic tumor microenvironment, drug distribution, and immune mechanisms in breast cancer. Furthermore, this review provides a comprehensive summary of specific antiangiogenic drugs, and relevant studies assessing the reversal of drug resistance in breast cancer. The potential mechanisms underlying these interventions are discussed, and prospects for the clinical application of antiangiogenic therapy to overcome breast cancer treatment resistance are highlighted.展开更多
Brain tumors’severity ranges from benign to highly aggressive and invasive.Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suit...Brain tumors’severity ranges from benign to highly aggressive and invasive.Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suitable antitumoral treatments.Here,we first describe the physiology and cellular composition of brain tumors.Then,we discuss the development of threedimensional tissue models utilizing brain tumor cells.In particular,we highlight the role of hydrogels in providing a biomimetic support for the cells to grow into defined structures.Microscale technologies,such as electrospinning and bioprinting,and advanced cellular models aim to mimic the extracellular matrix and natural cellular localization in engineered tumor tissues.Lastly,we review current applications and prospects of hydrogels for therapeutic purposes,such as drug delivery and co-administration with other therapies.Through further development,hydrogels can serve as a reliable option for in vitro modeling and treatment of brain tumors for translational medicine.展开更多
OBJECTIVE: Precision radiotherapy plays an important role in the management of brain tumors. This study aimed to identify global research trends in precision radiotherapy for brain tumors using a bibliometric analysi...OBJECTIVE: Precision radiotherapy plays an important role in the management of brain tumors. This study aimed to identify global research trends in precision radiotherapy for brain tumors using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for precision radiotherapy for brain tumors containing the key words cerebral tumor, brain tumor, intensity-modulated radiotherapy, stereotactic body radiation therapy, stereotactic ablative radiotherapy, imaging-guided radiotherapy, dose-guided radiotherapy, stereotactic brachytherapy, and stereotactic radiotherapy using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on precision radiotherapy for brain tumors which were published and indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: 2002-2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) Corrected papers or book chapters. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) top cited publications; (5) distribution according to journals; and (6) comparison of study results on precision radiotherapy for brain tumors. RESULTS: The stereotactic radiotherapy, intensity-modulated radiotherapy, and imaging-guided radiotherapy are three major methods of precision radiotherapy for brain tumors. There were 260 research articles addressing precision radiotherapy for brain tumors found within the Web of Science. The USA published the most papers on precision radiotherapy for brain tumors, followed by Germany and France. European Synchrotron Radiation Facility, German Cancer Research Center and Heidelberg University were the most prolific research institutes for publications on precision radiotherapy for brain tumors. Among the top 13 research institutes publishing in this field, seven are in the USA, three are in Germany, two are in France, and there is one institute in India. Research interests including urology and nephrology, clinical neurology, as well as rehabilitation are involved in precision radiotherapy for brain tumors studies. CONCLUSION: Precision radiotherapy for brain tumors remains a highly active area of research and development.展开更多
The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles(MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug del...The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles(MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug delivery, besides, in magnetic recording, catalysis, and others. MNPs, due to high magnetization response, can be manipulated by the external magnetic fields to penetrate directly into the tumor, thus they can act as ideal drug carriers. MNPs also play a crucial role in drug delivery system because of their high surface-to-volume ratio and porosity. The drug delivery in tumor therapy is related to the sizes, shapes, and surface coatings of MNPs as carriers. Therefore, in this review, we first summarize the effects of the sizes, shapes, and surface coatings of MNPs on drug delivery, then discuss three types of drug release systems, i.e., p H-controlled, temperature-controlled, and magnetic-controlled drug release systems, and finally compare the principle of passive drug release with that of active drug release in tumor therapy.展开更多
Photodynamic therapy(PDT)is a promising tool for least-invasive alternative methods for the treatment of brain tumors.The newly discovered PDT-induced opening of the blood–brain barrier(BBB)permeability open novel st...Photodynamic therapy(PDT)is a promising tool for least-invasive alternative methods for the treatment of brain tumors.The newly discovered PDT-induced opening of the blood–brain barrier(BBB)permeability open novel strategies for drug-brain delivery during post-surgical treatment of glioblastoma GBM.Here we discuss mechanisms of PDT-mediated opening of the BBB and age differences in PDT-related increase in BBB permeability,including with formation of brain edema.The meningeal lymphatic system plays a crucial role in the mechanism of brain drainage and clearance from metabolites and toxic molecules.We discuss that noninvasive photonic stimulation of°uid clearance via meningeal lymphatic vessels,and application of optical coherence tomography(OCT)for bed-side monitoring of meningeal lymphatic drainage has the promising perspective to be widely applied in both experimental and clinical studies of PDT and improving guidelines of PDT of brain tumors.展开更多
Gastrointestinal stromal tumors(GISTs)are the most common type of soft tissue sarcoma in the gastrointestinal tract.Most GISTs have been attributed to activated gain-of-function mutations in either KIT or platelet-der...Gastrointestinal stromal tumors(GISTs)are the most common type of soft tissue sarcoma in the gastrointestinal tract.Most GISTs have been attributed to activated gain-of-function mutations in either KIT or platelet-derived growth factor receptorα,making these molecular features essential targets for therapeutic interventions.Although surgery is the standard treatment for localized GISTs,patients often experience relapse and disease progression even after surgery.In recent years,targeted therapy has significantly improved the prognosis of patients with advanced GISTs.Imatinib mesylate,a KIT inhibitor,is the first-line treatment for advanced GISTs and has revolutionized the treatment of this disease.However,drug resistance remains a major issue with imatinib treatment,as a significant majority of patients become resistant to imatinib either after initiation or after 2–3 years of treatment.Consequently,novel tyrosine kinase inhibitors such as sunitinib,regorafenib,ripretinib,and avapritinib have been introduced to address drug resistance.Immunotherapy has emerged as a potential approach for the treatment of advanced GISTs.This review comprehensively summarizes the pathogenesis of GISTs and the development of targeted therapies and immunotherapies,provides an overview of the emergence of drug resistance in advanced GISTs,and discusses the challenges and prospects associated with the treatment of GISTs.展开更多
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these...Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.展开更多
Patients with primary or secondary tumors in the central nervous system may have seizures resulting from direct tissue damage,metabolic abnormalities,infection,or toxic side effects of medications.In pediatric patient...Patients with primary or secondary tumors in the central nervous system may have seizures resulting from direct tissue damage,metabolic abnormalities,infection,or toxic side effects of medications.In pediatric patients,it is more frequent to use drugs to control secondary epilepsy.In this article,we discuss the main nuances of antiepileptic drugs for the proper management of children with central nervous system tumors.展开更多
To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technolog...To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological advancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better understanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Linear Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.展开更多
Patients with brain tumors,specifically,malignant forms such as glioblastoma,medulloblastoma and ependymoma,exhibit dismal survival rates despite advances in treatment strategies.Chemotherapeutics,the primary adjuvant...Patients with brain tumors,specifically,malignant forms such as glioblastoma,medulloblastoma and ependymoma,exhibit dismal survival rates despite advances in treatment strategies.Chemotherapeutics,the primary adjuvant treatment for human brain tumors following surgery,commonly lack efficacy due to either intrinsic or acquired drug resistance.New treatments targeting epigenetic factors are being explored.Post-translational histone modification provides a critical regulatory platform for processes such as chromosome condensation and segregation,apoptosis,gene transcription,and DNA replication and repair.This work reviews how aberrant histone modifications and alterations in histone-modifying enzymes can drive the acquisition of drug resistance in brain tumors.Elucidating these mechanisms should lead to new treatments for overcoming drug resistance.展开更多
The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, p...The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years.展开更多
Validated preclinical studies have provided evidence that anti-vascular endothelial growth factor(VEGF) compounds enhance the activity of subsequent antitumor therapy, but the mechanism of this potentiation is far fro...Validated preclinical studies have provided evidence that anti-vascular endothelial growth factor(VEGF) compounds enhance the activity of subsequent antitumor therapy, but the mechanism of this potentiation is far from clear. The most widespread explanation is enhanced delivery of therapeutics due to vascular remodeling, lower interstitial pressure, and increased blood flow. While the antiangiogenic efects on vascular morphology have been fairly consistent in both preclinical and clinical settings, the improvement of tumor vessel function is debated. This review focuses on the efect of anti-VEGF therapy on tumor microenvironment morphology and functions, and its therapeutic beneits when combined with other therapies. The uptake and spatial distribution of chemotherapeutic agents into the tumor after anti-VEGF are examined.展开更多
AIM:rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer.However, a sustained and high protein delivery is required to achieve the desired therapeutic effects.We evaluated the im...AIM:rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer.However, a sustained and high protein delivery is required to achieve the desired therapeutic effects.We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model. METHODS:rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines.To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin,Western blotting and ELISA were performed.The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays. The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor,etoposide,were evaluated in a mouse liver tumor model. RESULTS:Topoisomerase inhibitors,including camptothecin and etoposide,were found to increase the endostatin exPression level in vitro.The over-expressed endostatin, as a result of pretreatment with a topoisomerase inhibitor, was also biologically active.In animal experiments,the combined therapy of topoisomerase inhibitor,etoposide with the rAAV-endostatin vector had the best tumor- suppressive effect and tumor foci were barely observed in livers of the treated mice.Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice.Finally,the mice treated With rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models. CONCLUSION:rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.展开更多
Colorectal cancer(CRC) is often diagnosed at an advanced stage when tumor cell dissemination has taken place. Chemo-and targeted therapies provide only a limited increase of overall survival for these patients. The ma...Colorectal cancer(CRC) is often diagnosed at an advanced stage when tumor cell dissemination has taken place. Chemo-and targeted therapies provide only a limited increase of overall survival for these patients. The major reason for clinical outcome finds its origin in therapy resistance. Escape mechanisms to both chemo-and targeted therapy remain the main culprits. Here, we evaluate major resistant mechanisms and elaborate on potential new therapies. Amongst promising therapies is α-amanitin antibodydrug conjugate targeting hemizygous p53 loss. It becomes clear that a dynamic interaction with the tumor microenvironment exists and that this dictates therapeutic outcome. In addition, CRC displays a limited response to checkpoint inhibitors, as only a minority of patients with microsatellite instable high tumors is susceptible. In this review, we highlight new developments with clinical potentials to augment responses to checkpoint inhibitors.展开更多
Here,we discuss an important problem in medicine as development of efctive strategies for brain drug delivery.This problem is related to the blood-brain barrier(BBB),which is a“customs”controlling the entrance of di...Here,we discuss an important problem in medicine as development of efctive strategies for brain drug delivery.This problem is related to the blood-brain barrier(BBB),which is a“customs”controlling the entrance of different molecules from blood into the brain protecting the normal function of central nervous system(CNS).We show three interfaces of anatomical side of BBB and two functional types of BBB一physical and transporter barriers.Although this protective mechanism is essential for health of CNS,it also creates a hindrance to the entry of drugs into the brain.The BBB was discovered over 100 years ago but till now,there is no efective methods for brain drug delivery.There ane more than 70 approaches for overcoming BBB incuding physical,chenical and biological techniques but all of these tools have limitation to be widely used in clinical practice due to invasi venes,challenge in performing,very costly or lim-itation of drug concentration.Photodynamic therapy(PDT)is usual clinical method of surgical navigation for the resection of brain tumor and anti-cancer therapy.Nowadays,the application of PDT is considered as a potential promising tool for brain drug delivery via opening of BBB.Here,we show the first sucoessful experimental results in this field discussing the adventures and disadv antages of PDT-related BBB disruption as well as altematives to overcome these limitations and possi ble mechanisms with new pathways for brain clearance via gly mphatic and lymphatic systems.展开更多
As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and dis...As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and disorders have been linked to imbalances in mTOR's regulatory systems.Multiple mTOR inhibitor therapy has recently acquired popularity as a method of treating cancers brought on by abnormal signal transduction pathways.We also explore potential processes behind tumor cell resistance to mTOR inhibitors and suggest workarounds to overcome this challenge.We hold the potential to pioneer cutting-edge methods for tumor therapy by methodically examining the complex mTOR signaling system and its regulatory complexity.Increasing our knowledge of mTOR-related mechanisms not only creates opportunities for cutting-edge methods to target and treat cancers but also has the potential to improve patient outcomes and general quality of life significantly.This review paper explores the most recent developments in understanding mTOR signaling pathways and the use of mTOR inhibitors in treating tumors.展开更多
BACKGROUND For primary liver cancer,the key to conversion therapy depends on the effectiveness of drug treatment.Patient-derived tumor organoids have been demonstrated to improve the efficacy of conversion therapy by ...BACKGROUND For primary liver cancer,the key to conversion therapy depends on the effectiveness of drug treatment.Patient-derived tumor organoids have been demonstrated to improve the efficacy of conversion therapy by identifying individualtargeted effective drugs,but their clinical effects in liver cancer remain unknown.CASE SUMMARY We described a patient with hepatocellular carcinoma(HCC)who achieved pathologic complete response(pCR)to conversion therapy guided by the patientderived organoid(PDO)drug sensitivity testing.Despite insufficiency of the remaining liver volume after hepatectomy,the patient obtained tumor reduction after treatment with the PDO-sensitive drugs and successfully underwent radical surgical resection.Postoperatively,pCR was observed.CONCLUSION PDOs contributes to screening sensitive drugs for HCC patients to realize the personalized treatment and improve the conversion therapy efficacy.展开更多
Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments.Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often...Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments.Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood-tumor barrier(BTB).BTB activates its Wnt signaling to maintain barrier properties,e.g.,Mfsd2a-mediated BTB low transcytosis.Here,we reported VCAM-1-targeting nano-wogonin(W@V-NPs)as an adjuvant of nano-orlistat(O@V-NPs)to intensify drug delivery and inhibit lipogenesis of brain metastases.W@V-NPs were proven to be able to inactivate BTB Wnt signaling,downregulate BTB Mfsd2a,accelerate BTB vesicular transport,and enhance tumor accumulation of O@V-NPs.With the ability to specifically kill cancer cells in a lipid-deprived environment with IC_(50) at 48 ng/mL,W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice.The combination did not induce brain edema,cognitive impairment,and systemic toxicity in healthy mice.Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.展开更多
文摘Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier(BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 81973861)Zhejiang Provincial Ministry Medical and Health Co-construction Major Project (Grant No. 20214355173)+2 种基金Zhejiang Science and Technology Department“Vanguard”“Leading Goose”research (Grant No. 2023C03044)Zhejiang Provincial Health“Leading Talents”ProjectZhejiang Medical and Health Science and Technology Project (Grant No. 2022KY558)。
文摘Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer treatments, via exacerbation of tumor hypoxia, decreased effective drug concentrations within tumors, and immune-related mechanisms. Antiangiogenic therapy can counteract these breast cancer resistance factors by promoting tumor vascular normalization. The combination of antiangiogenic therapy with chemotherapy, targeted therapy, or immunotherapy has emerged as a promising approach for overcoming drug resistance in breast cancer. This review examines the mechanisms associated with angiogenesis and the interactions among tumor angiogenesis, the hypoxic tumor microenvironment, drug distribution, and immune mechanisms in breast cancer. Furthermore, this review provides a comprehensive summary of specific antiangiogenic drugs, and relevant studies assessing the reversal of drug resistance in breast cancer. The potential mechanisms underlying these interventions are discussed, and prospects for the clinical application of antiangiogenic therapy to overcome breast cancer treatment resistance are highlighted.
基金The authors also acknowledge funding from the National Institutes of Health(1U01CA214411-01A1).
文摘Brain tumors’severity ranges from benign to highly aggressive and invasive.Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suitable antitumoral treatments.Here,we first describe the physiology and cellular composition of brain tumors.Then,we discuss the development of threedimensional tissue models utilizing brain tumor cells.In particular,we highlight the role of hydrogels in providing a biomimetic support for the cells to grow into defined structures.Microscale technologies,such as electrospinning and bioprinting,and advanced cellular models aim to mimic the extracellular matrix and natural cellular localization in engineered tumor tissues.Lastly,we review current applications and prospects of hydrogels for therapeutic purposes,such as drug delivery and co-administration with other therapies.Through further development,hydrogels can serve as a reliable option for in vitro modeling and treatment of brain tumors for translational medicine.
文摘OBJECTIVE: Precision radiotherapy plays an important role in the management of brain tumors. This study aimed to identify global research trends in precision radiotherapy for brain tumors using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for precision radiotherapy for brain tumors containing the key words cerebral tumor, brain tumor, intensity-modulated radiotherapy, stereotactic body radiation therapy, stereotactic ablative radiotherapy, imaging-guided radiotherapy, dose-guided radiotherapy, stereotactic brachytherapy, and stereotactic radiotherapy using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on precision radiotherapy for brain tumors which were published and indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: 2002-2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) Corrected papers or book chapters. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) top cited publications; (5) distribution according to journals; and (6) comparison of study results on precision radiotherapy for brain tumors. RESULTS: The stereotactic radiotherapy, intensity-modulated radiotherapy, and imaging-guided radiotherapy are three major methods of precision radiotherapy for brain tumors. There were 260 research articles addressing precision radiotherapy for brain tumors found within the Web of Science. The USA published the most papers on precision radiotherapy for brain tumors, followed by Germany and France. European Synchrotron Radiation Facility, German Cancer Research Center and Heidelberg University were the most prolific research institutes for publications on precision radiotherapy for brain tumors. Among the top 13 research institutes publishing in this field, seven are in the USA, three are in Germany, two are in France, and there is one institute in India. Research interests including urology and nephrology, clinical neurology, as well as rehabilitation are involved in precision radiotherapy for brain tumors studies. CONCLUSION: Precision radiotherapy for brain tumors remains a highly active area of research and development.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52072245,61771092,and 81702588)the Natural Science Foundation of Shanghai,China(Grant No.17ZR1419700)。
文摘The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles(MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug delivery, besides, in magnetic recording, catalysis, and others. MNPs, due to high magnetization response, can be manipulated by the external magnetic fields to penetrate directly into the tumor, thus they can act as ideal drug carriers. MNPs also play a crucial role in drug delivery system because of their high surface-to-volume ratio and porosity. The drug delivery in tumor therapy is related to the sizes, shapes, and surface coatings of MNPs as carriers. Therefore, in this review, we first summarize the effects of the sizes, shapes, and surface coatings of MNPs on drug delivery, then discuss three types of drug release systems, i.e., p H-controlled, temperature-controlled, and magnetic-controlled drug release systems, and finally compare the principle of passive drug release with that of active drug release in tumor therapy.
基金supported by Grants of Russian Science Foundation No.17-75-20069(the part included PDT of brain tumor)and No.18-15-00172(the part included optical monitoring of lymphatic drainage system of the brain)and Ministry of Science and High Education 17.1223.2017/Pchsupported by the Program of Basic Research of the Presidium of the RAS No.32\Nanostructures:Physics,Chemistry,Biology,Basic Technologies."。
文摘Photodynamic therapy(PDT)is a promising tool for least-invasive alternative methods for the treatment of brain tumors.The newly discovered PDT-induced opening of the blood–brain barrier(BBB)permeability open novel strategies for drug-brain delivery during post-surgical treatment of glioblastoma GBM.Here we discuss mechanisms of PDT-mediated opening of the BBB and age differences in PDT-related increase in BBB permeability,including with formation of brain edema.The meningeal lymphatic system plays a crucial role in the mechanism of brain drainage and clearance from metabolites and toxic molecules.We discuss that noninvasive photonic stimulation of°uid clearance via meningeal lymphatic vessels,and application of optical coherence tomography(OCT)for bed-side monitoring of meningeal lymphatic drainage has the promising perspective to be widely applied in both experimental and clinical studies of PDT and improving guidelines of PDT of brain tumors.
基金supported by Quzhou City Jiang District Life Oasis Public Welfare Service Center,Health and Health Development Promotion Project(Oncology Research Special Project,no:BJHA-CRP-027).
文摘Gastrointestinal stromal tumors(GISTs)are the most common type of soft tissue sarcoma in the gastrointestinal tract.Most GISTs have been attributed to activated gain-of-function mutations in either KIT or platelet-derived growth factor receptorα,making these molecular features essential targets for therapeutic interventions.Although surgery is the standard treatment for localized GISTs,patients often experience relapse and disease progression even after surgery.In recent years,targeted therapy has significantly improved the prognosis of patients with advanced GISTs.Imatinib mesylate,a KIT inhibitor,is the first-line treatment for advanced GISTs and has revolutionized the treatment of this disease.However,drug resistance remains a major issue with imatinib treatment,as a significant majority of patients become resistant to imatinib either after initiation or after 2–3 years of treatment.Consequently,novel tyrosine kinase inhibitors such as sunitinib,regorafenib,ripretinib,and avapritinib have been introduced to address drug resistance.Immunotherapy has emerged as a potential approach for the treatment of advanced GISTs.This review comprehensively summarizes the pathogenesis of GISTs and the development of targeted therapies and immunotherapies,provides an overview of the emergence of drug resistance in advanced GISTs,and discusses the challenges and prospects associated with the treatment of GISTs.
基金supported by the National Natural Science Foundation of China, Nos. 82271411 (to RG), 51803072 (to WLiu)grants from the Department of Finance of Jilin Province, Nos. 2022SCZ25 (to RG), 2022SCZ10 (to WLiu), 2021SCZ07 (to RG)+2 种基金Jilin Provincial Science and Technology Program, No. YDZJ202201ZYTS038 (to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University, No. 2022qnpy11 (to WLuo)The Project of China-Japan Union Hospital of Jilin University, No. XHQMX20233 (to RG)
文摘Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.
文摘Patients with primary or secondary tumors in the central nervous system may have seizures resulting from direct tissue damage,metabolic abnormalities,infection,or toxic side effects of medications.In pediatric patients,it is more frequent to use drugs to control secondary epilepsy.In this article,we discuss the main nuances of antiepileptic drugs for the proper management of children with central nervous system tumors.
文摘To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological advancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better understanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Linear Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.
基金Supported by the Rory David Deutsch Foundationthe Surgical Neuro-oncology Research Fund of Ann&Robert H Lurie Children’s Hospital(A&RLCH) of Chicagothe Dr.Ralph and Marian C.Falk Medical Research Trust
文摘Patients with brain tumors,specifically,malignant forms such as glioblastoma,medulloblastoma and ependymoma,exhibit dismal survival rates despite advances in treatment strategies.Chemotherapeutics,the primary adjuvant treatment for human brain tumors following surgery,commonly lack efficacy due to either intrinsic or acquired drug resistance.New treatments targeting epigenetic factors are being explored.Post-translational histone modification provides a critical regulatory platform for processes such as chromosome condensation and segregation,apoptosis,gene transcription,and DNA replication and repair.This work reviews how aberrant histone modifications and alterations in histone-modifying enzymes can drive the acquisition of drug resistance in brain tumors.Elucidating these mechanisms should lead to new treatments for overcoming drug resistance.
文摘The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years.
基金supported by Grants from the Italian Association for Cancer Research(IG14532 and 12182 to RG)the Fondazione CARIPLO(No.2011-0614 to MC)
文摘Validated preclinical studies have provided evidence that anti-vascular endothelial growth factor(VEGF) compounds enhance the activity of subsequent antitumor therapy, but the mechanism of this potentiation is far from clear. The most widespread explanation is enhanced delivery of therapeutics due to vascular remodeling, lower interstitial pressure, and increased blood flow. While the antiangiogenic efects on vascular morphology have been fairly consistent in both preclinical and clinical settings, the improvement of tumor vessel function is debated. This review focuses on the efect of anti-VEGF therapy on tumor microenvironment morphology and functions, and its therapeutic beneits when combined with other therapies. The uptake and spatial distribution of chemotherapeutic agents into the tumor after anti-VEGF are examined.
基金Supported by a faculty research grant of Yonsei University College of Medicine for 2002,No.2002-06
文摘AIM:rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer.However, a sustained and high protein delivery is required to achieve the desired therapeutic effects.We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model. METHODS:rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines.To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin,Western blotting and ELISA were performed.The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays. The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor,etoposide,were evaluated in a mouse liver tumor model. RESULTS:Topoisomerase inhibitors,including camptothecin and etoposide,were found to increase the endostatin exPression level in vitro.The over-expressed endostatin, as a result of pretreatment with a topoisomerase inhibitor, was also biologically active.In animal experiments,the combined therapy of topoisomerase inhibitor,etoposide with the rAAV-endostatin vector had the best tumor- suppressive effect and tumor foci were barely observed in livers of the treated mice.Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice.Finally,the mice treated With rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models. CONCLUSION:rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.
基金Supported by the National Natural Science Foundation of China,No.81620108030
文摘Colorectal cancer(CRC) is often diagnosed at an advanced stage when tumor cell dissemination has taken place. Chemo-and targeted therapies provide only a limited increase of overall survival for these patients. The major reason for clinical outcome finds its origin in therapy resistance. Escape mechanisms to both chemo-and targeted therapy remain the main culprits. Here, we evaluate major resistant mechanisms and elaborate on potential new therapies. Amongst promising therapies is α-amanitin antibodydrug conjugate targeting hemizygous p53 loss. It becomes clear that a dynamic interaction with the tumor microenvironment exists and that this dictates therapeutic outcome. In addition, CRC displays a limited response to checkpoint inhibitors, as only a minority of patients with microsatellite instable high tumors is susceptible. In this review, we highlight new developments with clinical potentials to augment responses to checkpoint inhibitors.
基金supported by Grant of Russian Science Foundation No.17-15-01263.
文摘Here,we discuss an important problem in medicine as development of efctive strategies for brain drug delivery.This problem is related to the blood-brain barrier(BBB),which is a“customs”controlling the entrance of different molecules from blood into the brain protecting the normal function of central nervous system(CNS).We show three interfaces of anatomical side of BBB and two functional types of BBB一physical and transporter barriers.Although this protective mechanism is essential for health of CNS,it also creates a hindrance to the entry of drugs into the brain.The BBB was discovered over 100 years ago but till now,there is no efective methods for brain drug delivery.There ane more than 70 approaches for overcoming BBB incuding physical,chenical and biological techniques but all of these tools have limitation to be widely used in clinical practice due to invasi venes,challenge in performing,very costly or lim-itation of drug concentration.Photodynamic therapy(PDT)is usual clinical method of surgical navigation for the resection of brain tumor and anti-cancer therapy.Nowadays,the application of PDT is considered as a potential promising tool for brain drug delivery via opening of BBB.Here,we show the first sucoessful experimental results in this field discussing the adventures and disadv antages of PDT-related BBB disruption as well as altematives to overcome these limitations and possi ble mechanisms with new pathways for brain clearance via gly mphatic and lymphatic systems.
文摘As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and disorders have been linked to imbalances in mTOR's regulatory systems.Multiple mTOR inhibitor therapy has recently acquired popularity as a method of treating cancers brought on by abnormal signal transduction pathways.We also explore potential processes behind tumor cell resistance to mTOR inhibitors and suggest workarounds to overcome this challenge.We hold the potential to pioneer cutting-edge methods for tumor therapy by methodically examining the complex mTOR signaling system and its regulatory complexity.Increasing our knowledge of mTOR-related mechanisms not only creates opportunities for cutting-edge methods to target and treat cancers but also has the potential to improve patient outcomes and general quality of life significantly.This review paper explores the most recent developments in understanding mTOR signaling pathways and the use of mTOR inhibitors in treating tumors.
基金Chongqing Natural Science Foundation Project,No.CSTB2022NSCQ-MSX0172and Incubation Project for Talented Young People,No.2022YQB031.
文摘BACKGROUND For primary liver cancer,the key to conversion therapy depends on the effectiveness of drug treatment.Patient-derived tumor organoids have been demonstrated to improve the efficacy of conversion therapy by identifying individualtargeted effective drugs,but their clinical effects in liver cancer remain unknown.CASE SUMMARY We described a patient with hepatocellular carcinoma(HCC)who achieved pathologic complete response(pCR)to conversion therapy guided by the patientderived organoid(PDO)drug sensitivity testing.Despite insufficiency of the remaining liver volume after hepatectomy,the patient obtained tumor reduction after treatment with the PDO-sensitive drugs and successfully underwent radical surgical resection.Postoperatively,pCR was observed.CONCLUSION PDOs contributes to screening sensitive drugs for HCC patients to realize the personalized treatment and improve the conversion therapy efficacy.
基金supported by the National Natural Science Foundation of China(32171381 and 81973254)the National Innovation of Science and Technology-2030(Program of Brain Science and Brain-Inspired Intelligence Technology)grant(2021ZD0204004,China)+1 种基金Jiangsu Key Laboratory of Neuropsychiatric Diseases Research Major Program(No.ZZ2101,China)the Priority Academic Program Development of the Jiangsu Higher Education Institutes(PAPD),Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases,and the Suzhou Science and Technology Development Project(No.SJC2022021,China).
文摘Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments.Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood-tumor barrier(BTB).BTB activates its Wnt signaling to maintain barrier properties,e.g.,Mfsd2a-mediated BTB low transcytosis.Here,we reported VCAM-1-targeting nano-wogonin(W@V-NPs)as an adjuvant of nano-orlistat(O@V-NPs)to intensify drug delivery and inhibit lipogenesis of brain metastases.W@V-NPs were proven to be able to inactivate BTB Wnt signaling,downregulate BTB Mfsd2a,accelerate BTB vesicular transport,and enhance tumor accumulation of O@V-NPs.With the ability to specifically kill cancer cells in a lipid-deprived environment with IC_(50) at 48 ng/mL,W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice.The combination did not induce brain edema,cognitive impairment,and systemic toxicity in healthy mice.Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.