This article presents four (4) additions to a book on the brain’s OS published by SciRP in 2015 [1]. It is a kind of appendix to the book. Some familiarity with the earlier book is presupposed. The book itself propos...This article presents four (4) additions to a book on the brain’s OS published by SciRP in 2015 [1]. It is a kind of appendix to the book. Some familiarity with the earlier book is presupposed. The book itself proposes a complete physical and mathematical blueprint of the brain’s OS. A first addition to the book (see Chapters 5 to 10 below) concerns the relation between the afore-mentioned blueprint and the more than 2000-year-old so-called fundamental laws of thought of logic and philosophy, which came to be viewed as being three (3) in number, namely the laws of 1) Identity, 2) Contradiction, and 3) the Excluded Middle. The blueprint and the laws cannot both be the final foundation of the brain’s OS. The design of the present paper is to interpret the laws in strictly mathematical terms in light of the blueprint. This addition constitutes the bulk of the present article. Chapters 5 to 8 set the stage. Chapters 9 and 10 present a detailed mathematical analysis of the laws. A second addition to the book (Chapter 11) concerns the distinction between the laws and the axioms of the brain’s OS. Laws are part of physics. Axioms are part of mathematics. Since the theory of the brain’s OS involves both physics and mathematics, it exhibits both laws and axioms. A third addition (Chapter 12) to the book involves an additional flavor of digitality in the brain’s OS. In the book, there are five (5). But brain chemistry requires a sixth. It will be called Existence Digitality. A fourth addition (Chapter 13) concerns reflections on the role of imagination in theories of physics in light of the ignorance of deeper causes. Chapters 1 to 4 present preliminary matter, for the most part a brief survey of general concepts derived from what is in the book [1]. Some historical notes are gathered at the end in Chapter 14.展开更多
As in vertebrates, brains play key roles in rhythmic regulation, neuronal maintenance, diff erentiation and function, and control of the release of hormones in arthropods. But the structure and functional domains of t...As in vertebrates, brains play key roles in rhythmic regulation, neuronal maintenance, diff erentiation and function, and control of the release of hormones in arthropods. But the structure and functional domains of the brain are still not very clear in crustaceans. In the present study, we reveal the structural details of the brain in the redclaw crayfish using hematoxylin-eosin staining and microscopic examination, firstly. The brain of crayfish is consist of three main parts, namely, protocerebrum, deutocerebrum, and tritocerebrum, including some tracts and commissures, briefly. Secondly, at least 9 kinds of brain cells were identified on the basis of topology and cell shapes, as well as antibody labeling. We also provide morphological details of most cell types, which were previously un-described. In general, four types of glia and three types of neurosecretory cells were described except cluster 9/11 and cluster 10 cells. Glia were categorized into another three main kinds:(1) surface glia;(2) cortex glia; and(3) neuropile glia in addition to astrocytes identified by GFAP labelling. And neurosecretory cells were categorized into I, Ⅱ and III types based on morphological observation. Finally, cluster 9/11 and 10 cells derived from the brain of crayfish, could be used for primary culture about 7–9 d under the optimized conditions. There results provide a resource for improving the knowledge of the still incompletely defined neuroendocrinology of this species. Using the crayfish as an animal model, we are easy to carry out further research in manipulating their endocrine system, exploring cellular and synaptic mechanisms so much as larval production on a small scale, such as in a cell or tissue.展开更多
Purpose-Aiming at the shortcomings of EEG signals generated by brain’s sensorimotor region activated tasks,such as poor performance,low efficiency and weak robustness,this paper proposes an EEG signals classification...Purpose-Aiming at the shortcomings of EEG signals generated by brain’s sensorimotor region activated tasks,such as poor performance,low efficiency and weak robustness,this paper proposes an EEG signals classification method based on multi-dimensional fusion features.Design/methodology/approach-First,the improved Morlet wavelet is used to extract the spectrum feature maps from EEG signals.Then,the spatial-frequency features are extracted from the PSD maps by using the three-dimensional convolutional neural networks(3DCNNs)model.Finally,the spatial-frequency features are incorporated to the bidirectional gated recurrent units(Bi-GRUs)models to extract the spatial-frequencysequential multi-dimensional fusion features for recognition of brain’s sensorimotor region activated task.Findings-In the comparative experiments,the data sets of motor imagery(MI)/action observation(AO)/action execution(AE)tasks are selected to test the classification performance and robustness of the proposed algorithm.In addition,the impact of extracted features on the sensorimotor region and the impact on the classification processing are also analyzed by visualization during experiments.Originality/value-The experimental results show that the proposed algorithm extracts the corresponding brain activation features for different action related tasks,so as to achieve more stable classification performance in dealing with AO/MI/AE tasks,and has the best robustness on EEGsignals of different subjects.展开更多
The receptor for advanced glycation endproducts(RAGE)is a receptor of the immunoglobulin superfamily of cell surface molecules which plays important contributions under both physiological and pathological conditions...The receptor for advanced glycation endproducts(RAGE)is a receptor of the immunoglobulin superfamily of cell surface molecules which plays important contributions under both physiological and pathological conditions.Over the years extensive research work supported the detrimental role of RAGE in Alzheimer’s disease(AD)pathophysiology,ranging from its involvement in beta amyloid(Aβ)brain influx and clearance,展开更多
Deep brain stimulation(DBS)is a well established electrophysiological treatment initially applied to treat medication-refractory motor symptoms in Parkinson's disease(PD),and is now being explored for several neu...Deep brain stimulation(DBS)is a well established electrophysiological treatment initially applied to treat medication-refractory motor symptoms in Parkinson's disease(PD),and is now being explored for several neurological and psychiatric disorders.The specific physiological mechanisms underlying the effectiveness of DBS are not fully understood.展开更多
Two hundred years after James Parkinson first described the cardinal motor symptoms of the disorder that would later bear his name,there is still an irrefutable need for a therapy that targets the underlying pathophys...Two hundred years after James Parkinson first described the cardinal motor symptoms of the disorder that would later bear his name,there is still an irrefutable need for a therapy that targets the underlying pathophysiology of the disease and not solely its symptoms.展开更多
Alzheimer's disease(AD):AD,a neurodegenerative disorder and a significant cause of dementia throughout the world mostly affects the older adults but sometimes also seen in young age(early state AD)(Agrawal et a...Alzheimer's disease(AD):AD,a neurodegenerative disorder and a significant cause of dementia throughout the world mostly affects the older adults but sometimes also seen in young age(early state AD)(Agrawal et al.,2017).展开更多
Compensatory/adaptive mechanisms in the brain are hy- pothesized to be involved in its protection from the Alz- heimer's disease (AD) progression. These mechanisms are activated by malfunctioning of various brain s...Compensatory/adaptive mechanisms in the brain are hy- pothesized to be involved in its protection from the Alz- heimer's disease (AD) progression. These mechanisms are activated by malfunctioning of various brain systems: anti- oxidant, neurotrophic, neurotransmitter, immune, and oth- ers. Detailed analysis of compensatory^adaptive capabilities of these systems might be a start point for further discovery and development of perspective approaches for early diag- nostics and treatment of AD and associated neurodegenera- tive disorders.展开更多
Closed-loop deep brain stimulation(DBS):DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders.Various efforts to improve the clinical outcomes of the procedure ...Closed-loop deep brain stimulation(DBS):DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders.Various efforts to improve the clinical outcomes of the procedure have been previously made.Several factors affect the DBS clinical outcomes such as lead position,programming technique,展开更多
男皆“好色”,本性使然。——本文的中心思想。文章的主题句囊括了全文之赅意:A beautiful woman’s face is like chocolate,cash or cocaine(可卡因)to a young man’s brain,according to Harvard University researchers,这些比喻...男皆“好色”,本性使然。——本文的中心思想。文章的主题句囊括了全文之赅意:A beautiful woman’s face is like chocolate,cash or cocaine(可卡因)to a young man’s brain,according to Harvard University researchers,这些比喻虽然有些“俗”,但是,从生理和心理角度言,似乎也无可厚非。】展开更多
文摘This article presents four (4) additions to a book on the brain’s OS published by SciRP in 2015 [1]. It is a kind of appendix to the book. Some familiarity with the earlier book is presupposed. The book itself proposes a complete physical and mathematical blueprint of the brain’s OS. A first addition to the book (see Chapters 5 to 10 below) concerns the relation between the afore-mentioned blueprint and the more than 2000-year-old so-called fundamental laws of thought of logic and philosophy, which came to be viewed as being three (3) in number, namely the laws of 1) Identity, 2) Contradiction, and 3) the Excluded Middle. The blueprint and the laws cannot both be the final foundation of the brain’s OS. The design of the present paper is to interpret the laws in strictly mathematical terms in light of the blueprint. This addition constitutes the bulk of the present article. Chapters 5 to 8 set the stage. Chapters 9 and 10 present a detailed mathematical analysis of the laws. A second addition to the book (Chapter 11) concerns the distinction between the laws and the axioms of the brain’s OS. Laws are part of physics. Axioms are part of mathematics. Since the theory of the brain’s OS involves both physics and mathematics, it exhibits both laws and axioms. A third addition (Chapter 12) to the book involves an additional flavor of digitality in the brain’s OS. In the book, there are five (5). But brain chemistry requires a sixth. It will be called Existence Digitality. A fourth addition (Chapter 13) concerns reflections on the role of imagination in theories of physics in light of the ignorance of deeper causes. Chapters 1 to 4 present preliminary matter, for the most part a brief survey of general concepts derived from what is in the book [1]. Some historical notes are gathered at the end in Chapter 14.
基金Supported by the National Natural Science Foundation of China(No.41376165)the National Natural Science Foundation of ChinaIsrael Science Foundation(NSFC-ISF)(No.31461143007)the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology(No.2015ASKJ02)
文摘As in vertebrates, brains play key roles in rhythmic regulation, neuronal maintenance, diff erentiation and function, and control of the release of hormones in arthropods. But the structure and functional domains of the brain are still not very clear in crustaceans. In the present study, we reveal the structural details of the brain in the redclaw crayfish using hematoxylin-eosin staining and microscopic examination, firstly. The brain of crayfish is consist of three main parts, namely, protocerebrum, deutocerebrum, and tritocerebrum, including some tracts and commissures, briefly. Secondly, at least 9 kinds of brain cells were identified on the basis of topology and cell shapes, as well as antibody labeling. We also provide morphological details of most cell types, which were previously un-described. In general, four types of glia and three types of neurosecretory cells were described except cluster 9/11 and cluster 10 cells. Glia were categorized into another three main kinds:(1) surface glia;(2) cortex glia; and(3) neuropile glia in addition to astrocytes identified by GFAP labelling. And neurosecretory cells were categorized into I, Ⅱ and III types based on morphological observation. Finally, cluster 9/11 and 10 cells derived from the brain of crayfish, could be used for primary culture about 7–9 d under the optimized conditions. There results provide a resource for improving the knowledge of the still incompletely defined neuroendocrinology of this species. Using the crayfish as an animal model, we are easy to carry out further research in manipulating their endocrine system, exploring cellular and synaptic mechanisms so much as larval production on a small scale, such as in a cell or tissue.
基金The education and scientific research project of young and middle-aged teachers of Fujian provincial department of education(No.JAT171070).
文摘Purpose-Aiming at the shortcomings of EEG signals generated by brain’s sensorimotor region activated tasks,such as poor performance,low efficiency and weak robustness,this paper proposes an EEG signals classification method based on multi-dimensional fusion features.Design/methodology/approach-First,the improved Morlet wavelet is used to extract the spectrum feature maps from EEG signals.Then,the spatial-frequency features are extracted from the PSD maps by using the three-dimensional convolutional neural networks(3DCNNs)model.Finally,the spatial-frequency features are incorporated to the bidirectional gated recurrent units(Bi-GRUs)models to extract the spatial-frequencysequential multi-dimensional fusion features for recognition of brain’s sensorimotor region activated task.Findings-In the comparative experiments,the data sets of motor imagery(MI)/action observation(AO)/action execution(AE)tasks are selected to test the classification performance and robustness of the proposed algorithm.In addition,the impact of extracted features on the sensorimotor region and the impact on the classification processing are also analyzed by visualization during experiments.Originality/value-The experimental results show that the proposed algorithm extracts the corresponding brain activation features for different action related tasks,so as to achieve more stable classification performance in dealing with AO/MI/AE tasks,and has the best robustness on EEGsignals of different subjects.
文摘The receptor for advanced glycation endproducts(RAGE)is a receptor of the immunoglobulin superfamily of cell surface molecules which plays important contributions under both physiological and pathological conditions.Over the years extensive research work supported the detrimental role of RAGE in Alzheimer’s disease(AD)pathophysiology,ranging from its involvement in beta amyloid(Aβ)brain influx and clearance,
文摘Deep brain stimulation(DBS)is a well established electrophysiological treatment initially applied to treat medication-refractory motor symptoms in Parkinson's disease(PD),and is now being explored for several neurological and psychiatric disorders.The specific physiological mechanisms underlying the effectiveness of DBS are not fully understood.
基金supported by the European Union Horizon 2020 Programme(H2020-MSCA-ITN-2015) under the Marie Sklodowska-Curie Innovative Training NetworksGrant Agreement No.676408,Science Foundation Ireland(11/RFP/NES/3183)through a postgraduate scholarship from the Irish Research Council to Niamh Moriarty
文摘Two hundred years after James Parkinson first described the cardinal motor symptoms of the disorder that would later bear his name,there is still an irrefutable need for a therapy that targets the underlying pathophysiology of the disease and not solely its symptoms.
文摘Alzheimer's disease(AD):AD,a neurodegenerative disorder and a significant cause of dementia throughout the world mostly affects the older adults but sometimes also seen in young age(early state AD)(Agrawal et al.,2017).
基金supported by grant KOMFI 13-04-40106-H (Russia):"Structure-functional studies of р-75 receptor–molecular target for neurodegenerative diseases immunotherapy"Grant RFBR 13-04-00633A (Russia):"Study of role of receptor for advanced glycation end products (RAGE) in mechanisms of beta-amyloid neurotoxicity in model of sporadic Alzheimer’s disease"
文摘Compensatory/adaptive mechanisms in the brain are hy- pothesized to be involved in its protection from the Alz- heimer's disease (AD) progression. These mechanisms are activated by malfunctioning of various brain systems: anti- oxidant, neurotrophic, neurotransmitter, immune, and oth- ers. Detailed analysis of compensatory^adaptive capabilities of these systems might be a start point for further discovery and development of perspective approaches for early diag- nostics and treatment of AD and associated neurodegenera- tive disorders.
基金supported by Japan Society for the Promotion of Science(JSPS)Grant-in-Aid for young scientists(B)15K19984JSPS Fujita Memorial Fund for Medical Research,Takeda Science Foundation+1 种基金Uehara Memorial FoundationCentral Research Institute of Fukuoka University(No.161042)
文摘Closed-loop deep brain stimulation(DBS):DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders.Various efforts to improve the clinical outcomes of the procedure have been previously made.Several factors affect the DBS clinical outcomes such as lead position,programming technique,
文摘男皆“好色”,本性使然。——本文的中心思想。文章的主题句囊括了全文之赅意:A beautiful woman’s face is like chocolate,cash or cocaine(可卡因)to a young man’s brain,according to Harvard University researchers,这些比喻虽然有些“俗”,但是,从生理和心理角度言,似乎也无可厚非。】