期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Enhancing biocompatibility of the brain-machine interface:A review
1
作者 Jordan Villa Joaquin Cury +2 位作者 Lexie Kessler Xiaodong Tan Claus-Peter Richter 《Bioactive Materials》 SCIE CSCD 2024年第12期531-549,共19页
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording.Although some neuroprostheses have achieved ... In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording.Although some neuroprostheses have achieved clinical success,electrode material properties,inflammatory response,and glial scar formation at the electrode-tissue interfaces affect performance and sustainability.Those challenges can be addressed by improving some of the materials’mechanical,physical,chemical,and electrical properties.This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance. 展开更多
关键词 brain-machine interface NEUROPROSTHESES Implantable devices Electrode coatings Immune reaction
原文传递
Electrode materials for brain-machine interface:A review 被引量:4
2
作者 Nan Wu Shu Wan +3 位作者 Shi Su Haizhou Huang Guangbin Dou Litao Sun 《InfoMat》 SCIE CAS 2021年第11期1174-1194,共21页
Brain-machine interface(BMI)is a device that translates neuronal information into commands,which is capable of controlling external software or hardware,such as a computer or robotic arm.In consequence,the electrodes ... Brain-machine interface(BMI)is a device that translates neuronal information into commands,which is capable of controlling external software or hardware,such as a computer or robotic arm.In consequence,the electrodes with desirable electrical and mechanical properties for direct interacting between neural tissues and machines serves as the crucial and critical part of BMI technology.Nowadays,the development of material science provides many advanced electrodes for neural stimulating and recording.Particularly,the widespread applications of nanotechnologies have innovatively introduced biocompatible electrode that can have similar characteristics with neural tissue.This paper reviews the existing problems and discusses the latest development of electrode materials for BMI,including conducting polymers,silicon,carbon nanowires,graphene,and hybrid organic-inorganic nanomaterials.In addition,we will inspect at the technical and scientific challenges in the development of neural electrode for a broad application of BMI with focus on the biocompatibility,mechanical mismatch,and electrical performance of electrode materials. 展开更多
关键词 BIOCOMPATIBILITY brain-machine interface ELECTRODE materials IMPLANTABLE device
原文传递
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
3
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
直接脑控机器人接口技术 被引量:25
4
作者 伏云发 王越超 +2 位作者 李洪谊 徐保磊 李永程 《自动化学报》 EI CSCD 北大核心 2012年第8期1229-1246,共18页
直接脑控机器人接口(Brain-controlled robot interface,BCRI)是一种新型的人-机器人接口技术,是脑-机器接口/脑-计算机接口(Brain-machine interface,BMI/Brain-computer interface,BCI)在机器人控制领域的重要应用和研究方向.研究者... 直接脑控机器人接口(Brain-controlled robot interface,BCRI)是一种新型的人-机器人接口技术,是脑-机器接口/脑-计算机接口(Brain-machine interface,BMI/Brain-computer interface,BCI)在机器人控制领域的重要应用和研究方向.研究者相继在Nature、Science和其他重要国际期刊上报道了相关的实验研究和开发,目前已成为国际前沿研究热点.本文主要围绕BCRI中的控制策略、BMI/BCI模块与机器人多层控制模块的适应和融合、BCRI中的脑信号自适应分类算法以及人、BMI/BCI模块和机器人控制系统的三边自适应展开论述,分析了目前的研究情况、存在的局限和面临的若干重要问题,指出进一步的研究思路和方向. 展开更多
关键词 脑控机器人接口(BCRI) 脑-机器接口(bmi) 脑-计算机接口(BCI) 人-机器人接口
下载PDF
动物机器人新型智能监控系统设计 被引量:12
5
作者 罗勇 师黎 +2 位作者 周亮杰 樊红琨 杨春 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第11期2429-2435,共7页
利用USB通信和无线通信,设计了新型动物机器人智能监控系统。系统由PC监控软件、信号发射器、接收控制器等部分组成。与以往系统相比,该系统不仅可实现动物机器人行为控制,还可实现行为监测以及环境数据实时采集,具有微体积、微功耗等... 利用USB通信和无线通信,设计了新型动物机器人智能监控系统。系统由PC监控软件、信号发射器、接收控制器等部分组成。与以往系统相比,该系统不仅可实现动物机器人行为控制,还可实现行为监测以及环境数据实时采集,具有微体积、微功耗等特点。经动物实验表明,该系统通信可靠、工作时间长、控制准确、操作方便、数据采集精确,将为动物机器人的实时监控提供有力的技术支持。 展开更多
关键词 动物机器人 智能监控 行为控制 脑机接口
下载PDF
偶联剂对硼酸铝晶须/双马来酰亚胺性能的影响 被引量:4
6
作者 胡晓兰 梁国正 +1 位作者 贾巧英 马晓燕 《材料科学与工艺》 EI CAS CSCD 2004年第3期307-311,共5页
应用自行合成的一类新型硼酸酯偶联剂及硅烷偶联剂等对硼酸铝晶须进行表面处理,考察了硼酸铝晶须对双马来酰亚胺树脂体系性能的影响.结果表明,硼酸酯处理后的晶须对材料的改性作用较硅烷更加显著;硼酸铝晶须添加到双马来酰亚胺树脂中后... 应用自行合成的一类新型硼酸酯偶联剂及硅烷偶联剂等对硼酸铝晶须进行表面处理,考察了硼酸铝晶须对双马来酰亚胺树脂体系性能的影响.结果表明,硼酸酯处理后的晶须对材料的改性作用较硅烷更加显著;硼酸铝晶须添加到双马来酰亚胺树脂中后,材料的弯曲强度在晶须含量为5%时达到最大值,而后随晶须含量的增大稍有下降;随晶须添加量的增大材料的弯曲模量和耐热性逐渐提高;经硼酸酯处理的晶须与树脂基体具有更好的界面粘接. 展开更多
关键词 硼酸铝晶须 双马来酰亚胺树脂 偶联剂 硼酸酯 界面性能
下载PDF
直接脑-机接口生物相容性研究进展 被引量:2
7
作者 罗鹏 谢国明 江正 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2007年第6期1416-1418,共3页
脑-机接口的用途是为严重瘫痪病人提供一个与外部世界进行通信的出口。根据检测电极的不同,分为间接型和直接型脑-机接口。直接型脑-机接口是将检测电极植入大脑皮质内,可反映较小范围内神经元细胞的电活动,避免信号传递引起的衰减和其... 脑-机接口的用途是为严重瘫痪病人提供一个与外部世界进行通信的出口。根据检测电极的不同,分为间接型和直接型脑-机接口。直接型脑-机接口是将检测电极植入大脑皮质内,可反映较小范围内神经元细胞的电活动,避免信号传递引起的衰减和其它信号的干扰,从而满足精细控制所要求的时空分辨率和信噪比。直接型脑-机接口研究的关键问题是提高直接脑-机接口电极的生物相容性。本文介绍了具有较高生物相容性的直接脑-机接口电极的技术特点。 展开更多
关键词 脑-机接口 微电极 生物相容性 表面改性 电释放加工 化学蚀刻
下载PDF
基于偏最小二乘的大鼠初级运动皮层解码 被引量:1
8
作者 朱凡 李悦 +2 位作者 蒋凯 叶树明 郑筱祥 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第5期901-905,共5页
为了准确解析大鼠初级运动皮层神经元发放模式并预测相应的肢体动作,实验同时记录大鼠初级运动皮层神经元峰电位发放和大鼠前肢压力,利用K均值法和主成分分析法对神经元进行分类,采用偏最小二乘分析大鼠初级运动皮层神经元活动与前肢运... 为了准确解析大鼠初级运动皮层神经元发放模式并预测相应的肢体动作,实验同时记录大鼠初级运动皮层神经元峰电位发放和大鼠前肢压力,利用K均值法和主成分分析法对神经元进行分类,采用偏最小二乘分析大鼠初级运动皮层神经元活动与前肢运动参数之间的关系,并对该解码结果与维纳滤波和卡尔曼滤波算法的解码结果进行比较.实验结果表明:神经元的发放活动在压杆前0.6s开始有增加的趋势,提示大鼠的初级运动皮层神经元分布式活动可用于大鼠前肢运动的解析和预测,且偏最小二乘解码得到的预测值与真实压杆值的相关系数在0.85以上,均高于维纳滤波和卡尔曼滤波的解码结果. 展开更多
关键词 脑-机接口 初级运动皮层 神经解码 偏最小二乘
下载PDF
“人机耦合”型H-M系统关键技术——BCI研究
9
作者 石玉祥 《机床与液压》 北大核心 2006年第12期237-240,246,共5页
论述了人机一体化系统的概念和三种控制类型,提出大脑计算机接口(B rain-Computer Interface,BC I)是“人机耦合”型H-M系统关键技术。阐述了BC I的研究起源、脑电信号的分析方法、BC I的6种研究方法,BC I系统的硬件构成,对BC I的研究... 论述了人机一体化系统的概念和三种控制类型,提出大脑计算机接口(B rain-Computer Interface,BC I)是“人机耦合”型H-M系统关键技术。阐述了BC I的研究起源、脑电信号的分析方法、BC I的6种研究方法,BC I系统的硬件构成,对BC I的研究和人机一体化系统和技术的发展具有重要意义。 展开更多
关键词 人机一体化 人机耦合 BCI bmi
下载PDF
基于干电极的头带式射频无线脑-机接口系统 被引量:4
10
作者 郭凯 裴为华 +6 位作者 王宇 许冰 归强 李晓倩 杨宇 刘剑 陈弘达 《高技术通讯》 CAS CSCD 北大核心 2012年第2期211-216,共6页
研发了一种采用干电极的脑-机接口系统,此系统克服了现有脑机接口用脑电信号采集及信号处理系统笨重而不便于携带的缺点。此系统采用半导体微加工工艺制作的“干”电极作为采集脑电信号的电极,佩戴方便且能长时间使用。整个便携式脑... 研发了一种采用干电极的脑-机接口系统,此系统克服了现有脑机接口用脑电信号采集及信号处理系统笨重而不便于携带的缺点。此系统采用半导体微加工工艺制作的“干”电极作为采集脑电信号的电极,佩戴方便且能长时间使用。整个便携式脑机接口系统在脑电信号采集、处理和传输三个方面都采用了利于便携的设计,信号处理采用专用的集成电路,信号的采集和处理端与信号接收端采用射频芯片收发数据。整个系统的重量只有39g。该脑-机接口系统以人体的专注程度作为控制外部设备的控制信号,经过训练的受试者可以通过脑电信号实现对机器的控制。 展开更多
关键词 脑-机接口(bmi) 干电极 脑电(EEG) 便携
下载PDF
多通道实时神经信号采集与峰电位检测系统 被引量:1
11
作者 黄莉 张旭 +3 位作者 关宁 桂赟 裴为华 陈弘达 《高技术通讯》 CAS CSCD 北大核心 2013年第7期767-772,共6页
研制了一种可应用于在体神经检测的新型多通道实时神经信号采集与峰电位检测系统。该系统主要包括自主研发的植入式硅基微电极、集成多通道神经信号放大电路以及模数转换器(ADC)和数字信号处理器(DSP)等部分商用器件。该系统采用局部非... 研制了一种可应用于在体神经检测的新型多通道实时神经信号采集与峰电位检测系统。该系统主要包括自主研发的植入式硅基微电极、集成多通道神经信号放大电路以及模数转换器(ADC)和数字信号处理器(DSP)等部分商用器件。该系统采用局部非线性能量算子(NEO)对采集到的32通道神经信号进行同步峰电位检测,并在终端屏幕上显示检测结果。局部NEO峰电位检测算法硬件实现简单,能够完全自主地对神经信号峰电位进行实时检测。在生理盐水模拟的在体实验环境中的测试表明,整个系统的信噪比(SNR)为27.4dB,在此信噪比的条件下,局部NEO峰电位检测算法的检测精度可达95%。 展开更多
关键词 多通道 神经信号采集 峰电位检测 非线性能量算子(NEO) 数字信号处理 器(DSP) 脑机接口(bmi)
下载PDF
Systems Neuroengineering: Understanding and Interacting with the Brain 被引量:3
12
作者 Bradley J.Edelman Nessa Johnson +3 位作者 Abbas Sohrabpour Shanbao Tong Nitish Thakor Bin He 《Engineering》 SCIE EI 2015年第3期292-308,共17页
In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate co... In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders. 展开更多
关键词 systems neuroengineering NEUROIMAGING neural interface NEUROMODULATION NEUROTECHNOLOGY brain-computer interface brain-machine interface neural stimulation
下载PDF
Novel Biological Based Method for Robot Navigation and Localization 被引量:2
13
作者 Endri Rama Genci Capi +3 位作者 Yusuke Fujimura Norifumi Tanaka Shigenori Kawahara Mitsuru Jindai 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第1期16-23,共8页
The capability and reliability are crucial characteristics of mobile robots while navigating in complex environments. These robots are expected to perform many useful tasks which can improve the quality of life greatl... The capability and reliability are crucial characteristics of mobile robots while navigating in complex environments. These robots are expected to perform many useful tasks which can improve the quality of life greatly. Robot localization and decisionmaking are the most important cognitive processes during navigation. However, most of these algorithms are not efficient and are challenging tasks while robots navigate through complex environments. In this paper,we propose a biologically inspired method for robot decision-making, based on rat’s brain signals. Rodents accurately and rapidly navigate in complex spaces by localizing themselves in reference to the surrounding environmental landmarks. Firstly, we analyzed the rats’ strategies while navigating in the complex Y-maze, and recorded local field potentials(LFPs), simultaneously.The recorded LFPs were processed and different features were extracted which were used as the input in the artificial neural network(ANN) to predict the rat’s decision-making in each junction. The ANN performance was tested in a real robot and good performance is achieved. The implementation of our method on a real robot, demonstrates its abilities to imitate the rat’s decision-making and integrate the internal states with external sensors, in order to perform reliable navigation in complex maze. 展开更多
关键词 Brain machine interface(bmi) DECISION-MAKING local field potentials(LFPs) mobile robot NAVIGATION neural network rat signal processing
下载PDF
Toward the Next Generation of Retinal Neuroprosthesis: Visual Computation with Spikes 被引量:3
14
作者 Zhaofei Yu Jian K.Liu +4 位作者 Shanshan Jia Yichen Zhang Yajing Zheng Yonghong Tian Tiejun Huang 《Engineering》 SCIE EI 2020年第4期449-461,共13页
A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal signals of the brain in a closed-loop fashion,while simultaneously receiving stimuli from the environment and control... A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal signals of the brain in a closed-loop fashion,while simultaneously receiving stimuli from the environment and controlling some part of a human brain or body.Incoming visual information can be processed by the brain in millisecond intervals.The retina computes visual scenes and sends its output to the cortex in the form of neuronal spikes for further computation.Thus,the neuronal signal of interest for a retinal neuroprosthesis is the neuronal spike.Closed-loop computation in a neuroprosthesis includes two stages:encoding a stimulus as a neuronal signal,and decoding it back into a stimulus.In this paper,we review some of the recent progress that has been achieved in visual computation models that use spikes to analyze natural scenes that include static images and dynamic videos.We hypothesize that in order to obtain a better understanding of the computational principles in the retina,a hypercircuit view of the retina is necessary,in which the different functional network motifs that have been revealed in the cortex neuronal network are taken into consideration when interacting with the retina.The different building blocks of the retina,which include a diversity of cell types and synaptic connections-both chemical synapses and electrical synapses(gap junctions)-make the retina an ideal neuronal network for adapting the computational techniques that have been developed in artificial intelligence to model the encoding and decoding of visual scenes.An overall systems approach to visual computation with neuronal spikes is necessary in order to advance the next generation of retinal neuroprosthesis as an artificial visual system. 展开更多
关键词 Visual coding RETINA NEUROPROSTHESIS brain-machine interface Artificial intelligence Deep learning Spiking neural network Probabilistic graphical model
下载PDF
脑机交互研究及标准化实践 被引量:1
15
作者 孙锴 王跃明 《信息技术与标准化》 2015年第4期10-13,共4页
介绍脑机交互的概念及标准化的必要性,讨论近年来脑机交互的发展状况,重点阐述国内外植入式脑机接口的研究历程,并从脑机交互系统角度提出了脑机交互标准化的思考,同时介绍在脑机交互计算标准化方面的相关实践。
关键词 脑机交互 脑机交互标准 脑机交互计算平台
下载PDF
Odorant discrimination using functional near-infrared spectroscopy of the main olfactory bulb in rats
16
作者 Inwon Jung Kyungjin You +3 位作者 Hyunchool Shin Chinsu Koh Hyungcheul Shin Jaewoo Shin 《Journal of Measurement Science and Instrumentation》 CAS 2013年第1期89-93,共5页
We characterize the hemodynamic response changes near-infrared spectroscopy (NIRS) during the presentation of in the main olfactory bulb (MOB) of anesthetized rats with three different odorants: (i) plain air a... We characterize the hemodynamic response changes near-infrared spectroscopy (NIRS) during the presentation of in the main olfactory bulb (MOB) of anesthetized rats with three different odorants: (i) plain air as a reference (Blank), (ii) 2-heptanone (HEP), and (iii) isopropylbenzene (Ib). Odorants generate different changes in the concentrations of oxy- hemoglobin. Our results suggest that NIRS technology might be useful in discriminating various odorants in a non-invasive manner using animals with a superb olfactory system. 展开更多
关键词 brain-machine interface(bmi) functional near-infrared spectroscopy(fNIRS) main olfactory bulb(MOB) oxyhemoglobin(HbO2) Beer-Lambert law maximum likelihood estimation(MLE)
下载PDF
Finger movement inference using M1 neural activities
17
作者 Jonghoon Yoon Kyungjin You +2 位作者 Marc H Schieber Nitish V Thakor Hyunchool Shin 《Journal of Measurement Science and Instrumentation》 CAS 2012年第2期196-199,共4页
The paper presents the neural decoding result of finger or wrist movements using the primary motor cortex(M1)neural activities prior to its movement.It is well known that the observations of motor commands in brain ar... The paper presents the neural decoding result of finger or wrist movements using the primary motor cortex(M1)neural activities prior to its movement.It is well known that the observations of motor commands in brain are in advance before motor movements in the central nerve system.Readiness potential(RP)for electroencephalogram(EEG)has become an important domain of research.Likewise,pre-movement neural responses in M1 primary motor cortex have been observed.The neural activity data before 1 s.were used for neural decoding when the actual movements happened around 1 s.The obtained decoding accuracy in novel method reaches as high as 95% with 30 randomly selected neurons. 展开更多
关键词 neural decoding primary motor cortex (M1) readiness potential Skellambased maximum likelihood brain-machine interface (BM1)
下载PDF
碳纤维复合材料短梁剪切疲劳特性
18
作者 冼杏娟 杜明亮 《航空学报》 EI CAS CSCD 北大核心 1992年第7期A453-A456,共4页
研究了碳纤维增强双马来酰亚胺复合材料的层间剪切静态与疲劳加载性质,分析了不同基体、不同铺层界面对层剪性质的影响。给出了层剪疲劳加载的S-N曲线;讨论了层间剪切损伤和增强机理,观察了微观特征。与碳/环氧复合材料相比,双马来酰亚... 研究了碳纤维增强双马来酰亚胺复合材料的层间剪切静态与疲劳加载性质,分析了不同基体、不同铺层界面对层剪性质的影响。给出了层剪疲劳加载的S-N曲线;讨论了层间剪切损伤和增强机理,观察了微观特征。与碳/环氧复合材料相比,双马来酰亚胺基体复合材料在碳纤维和基体之间粘接良好,从而改进了纤维抗疲劳裂纹扩展的能力。 展开更多
关键词 层间剪切 疲劳 界面 复合材料 短梁
下载PDF
Neural decoding based on probabilistic neural network 被引量:2
19
作者 Yi YU Shao-min ZHANG +4 位作者 Huai-jian ZHANG Xiao-chun LIU Qiao-sheng ZHANG Xiao-xiang ZHENG Jian-hua DAI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2010年第4期298-306,共9页
Brain-machine interface (BMI) has been developed due to its possibility to cure severe body paralysis. This technology has been used to realize the direct control of prosthetic devices,such as robot arms,computer curs... Brain-machine interface (BMI) has been developed due to its possibility to cure severe body paralysis. This technology has been used to realize the direct control of prosthetic devices,such as robot arms,computer cursors,and paralyzed muscles. A variety of neural decoding algorithms have been designed to explore relationships between neural activities and movements of the limbs. In this paper,two novel neural decoding methods based on probabilistic neural network (PNN) in rats were introduced,the PNN decoder and the modified PNN (MPNN) decoder. In the ex-periment,rats were trained to obtain water by pressing a lever over a pressure threshold. Microelectrode array was implanted in the motor cortex to record neural activity,and pressure was recorded by a pressure sensor synchronously. After training,the pressure values were estimated from the neural signals by PNN and MPNN decoders. Their per-formances were evaluated by a correlation coefficient (CC) and a mean square error (MSE). The results show that the MPNN decoder,with a CC of 0.8657 and an MSE of 0.2563,outperformed the traditionally-used Wiener filter (WF) and Kalman filter (KF) decoders. It was also observed that the discretization level did not affect the MPNN performance,indicating that the MPNN decoder can handle different tasks in BMI system,including the detection of movement states and estimation of continuous kinematic parameters. 展开更多
关键词 brain-machine interfaces (bmi Neural decoding Probabilistic neural network (PNN) Microelectrode array
原文传递
基于遗传算法LS-SVM直接逆模型的闭环脑机接口单关节控制 被引量:4
20
作者 孙京诰 王硕 +2 位作者 杨嘉雄 薛瑞 潘红光 《信息与控制》 CSCD 北大核心 2018年第6期656-662,共7页
脑机接口系统通过大脑—计算机接口技术和控制理论的组合来弥补由于肌体的受损部分而造成的信息缺失.本研究基于心理生理皮质神经元放电率电路模型,在脑机接口控制理论分析的基础上进行自发单关节运动任务,采用自适应ESN(echo state net... 脑机接口系统通过大脑—计算机接口技术和控制理论的组合来弥补由于肌体的受损部分而造成的信息缺失.本研究基于心理生理皮质神经元放电率电路模型,在脑机接口控制理论分析的基础上进行自发单关节运动任务,采用自适应ESN(echo state network)设计非线性解码器,并引入FORCE(First Order Reduced and Contrdled Error learning)算法更新网络输出权值,通过仿真有无自然本体反馈信息情况下的解码器的性能来验证所设计的解码器的有效性.最后,通过基于遗传算法LS-SVM(least squares support vector machine)的直接逆模型框架,设计近似大脑皮层感觉区神经元放电率的最佳人工本体反馈去刺激大脑皮层感觉区神经元.仿真结果发现,所设计的闭环脑机接口(BMI)系统框架能够很好地恢复在线自发单关节自然运动任务性能,这也为当系统模型未知时,根据对象的输入输出数据恢复闭环系统的性能提供了新的研究思路. 展开更多
关键词 脑机接口(bmi) 最小二乘支持向量机(LSSVM) 单关节控制递归神经网络(RNN) 回声状态网络(ESN)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部