During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mecha...During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mechanical coupling model of high-speed wheel-mounted brake discs containing bolted joints and contact relationships is established.The direct coupling method is used to analyze the temperature and stress of the brake discs during an emergency braking event with an initial speed of 300 km/h.A full-scale bench test is also conducted to monitor the temperatures of the friction ring and bolted joints.The simulation result shows that the surface temperature of the friction ring reaches its peak value of 414°C after 102 s of braking,which agrees well with the bench test result.The maximum alternating thermal stress occurs in the bolt hole where the maximum circumferential compressive stress is−658 MPa and the maximum circumferential tensile stress is 134 MPa.During the braking process,the out-of-plane deformation of the middle part of the friction ring is larger than that of the edge,which increases the axial tensile load of the connecting bolt.This work provides support for the design of brake discs and connecting bolts.展开更多
The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentio...The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions--constant, linear, and quadratic--are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25,71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.展开更多
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover...The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.展开更多
In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different openin...In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different opening angles were analyzed as well as the flow field's variation laws. Six cases were researched,taking opening angles 45°,60°,75°,80°,85° and 90° respectively.Three-dimensional Reynolds-average Navier-Stokes equation combined with k-ε turbulence model was utilized. The control equation was discretized and solved by finite volume method.SIMPLE method was also considered to couple the pressure and velocity fields and search the numeric solutions. Conclusions can be achieved from the results which are shown as follows. When the opening angle increases from 45° to 75°,the aerodynamic forces and the central area with larger pressure increase fast,and the flow field distribution changes greatly; when the opening angle increases from75° to 90°,the aerodynamic forces and the central area with larger pressure increase slowly, and the flow field distribution changes slightly; considering train boundary and opening performance of the wind resistance brake mechanism,the opening angle should be 75°.展开更多
The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning...The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning the characteristics of rail temperature rise caused by eddy current has its practical necessity. In the research, the working principle of a linear eddy current brake is introduced and its FEA model is established. According to the generation mechanism of eddy current, the theoretical formula of the internal energy which is produced by the eddy current is deduced and the thermal load on the rail is obtained. ANSYS is used to simulate the rail temperature changes under different conditions of thermal loads. The research result shows the main factors which contribute to the rising of rail temperature are the train speed, brake gap and exciting current. The rail temperature rises non-linearly with the in- crease of train speed. The rail temperature rise curve is more sensitive to the exciting current than the air gap. Moreover, the difference stimulated by temperature rising between rails of 60 kg/m and 75 kg/m is presented as well.展开更多
基金Supported by Natural Science Foundation of China(Grant No.52075032)Technology Research and Development Program Project of CHINA RAILWAY(Grant No.P2020J024).
文摘During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mechanical coupling model of high-speed wheel-mounted brake discs containing bolted joints and contact relationships is established.The direct coupling method is used to analyze the temperature and stress of the brake discs during an emergency braking event with an initial speed of 300 km/h.A full-scale bench test is also conducted to monitor the temperatures of the friction ring and bolted joints.The simulation result shows that the surface temperature of the friction ring reaches its peak value of 414°C after 102 s of braking,which agrees well with the bench test result.The maximum alternating thermal stress occurs in the bolt hole where the maximum circumferential compressive stress is−658 MPa and the maximum circumferential tensile stress is 134 MPa.During the braking process,the out-of-plane deformation of the middle part of the friction ring is larger than that of the edge,which increases the axial tensile load of the connecting bolt.This work provides support for the design of brake discs and connecting bolts.
基金supported by National Natural Science Foundation of China(Grant No.61004077)Fundamental Research Funds for the Central Universities of China(Grant No.2860219022)Foundation of Traction Power State Key Laboratory of Southwest Jiaotong University,China(Grant No.TPL1308)
文摘The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions--constant, linear, and quadratic--are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25,71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.
基金supported by the National Natural Science Foundation of China(Grant 51305437)Guangdong Innovative Research Team Program of China(Grant201001D0104648280)
文摘The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
基金the New Type of Non-Adhesion Braking-Aerodynamics Braking,Ministry of Railw ays,China(No.2860235018)the Fundamental Research Funds for the Central Universities,China(No.2860219022)
文摘In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different opening angles were analyzed as well as the flow field's variation laws. Six cases were researched,taking opening angles 45°,60°,75°,80°,85° and 90° respectively.Three-dimensional Reynolds-average Navier-Stokes equation combined with k-ε turbulence model was utilized. The control equation was discretized and solved by finite volume method.SIMPLE method was also considered to couple the pressure and velocity fields and search the numeric solutions. Conclusions can be achieved from the results which are shown as follows. When the opening angle increases from 45° to 75°,the aerodynamic forces and the central area with larger pressure increase fast,and the flow field distribution changes greatly; when the opening angle increases from75° to 90°,the aerodynamic forces and the central area with larger pressure increase slowly, and the flow field distribution changes slightly; considering train boundary and opening performance of the wind resistance brake mechanism,the opening angle should be 75°.
基金project is supported by the Fundamental Research Funds for the Central Universities(No.2860219030)Foundation of State Key Laboratory of Traction Power,Southwest Jiaotong University(No. TPL1308)
文摘The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning the characteristics of rail temperature rise caused by eddy current has its practical necessity. In the research, the working principle of a linear eddy current brake is introduced and its FEA model is established. According to the generation mechanism of eddy current, the theoretical formula of the internal energy which is produced by the eddy current is deduced and the thermal load on the rail is obtained. ANSYS is used to simulate the rail temperature changes under different conditions of thermal loads. The research result shows the main factors which contribute to the rising of rail temperature are the train speed, brake gap and exciting current. The rail temperature rises non-linearly with the in- crease of train speed. The rail temperature rise curve is more sensitive to the exciting current than the air gap. Moreover, the difference stimulated by temperature rising between rails of 60 kg/m and 75 kg/m is presented as well.