During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mecha...During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mechanical coupling model of high-speed wheel-mounted brake discs containing bolted joints and contact relationships is established.The direct coupling method is used to analyze the temperature and stress of the brake discs during an emergency braking event with an initial speed of 300 km/h.A full-scale bench test is also conducted to monitor the temperatures of the friction ring and bolted joints.The simulation result shows that the surface temperature of the friction ring reaches its peak value of 414°C after 102 s of braking,which agrees well with the bench test result.The maximum alternating thermal stress occurs in the bolt hole where the maximum circumferential compressive stress is−658 MPa and the maximum circumferential tensile stress is 134 MPa.During the braking process,the out-of-plane deformation of the middle part of the friction ring is larger than that of the edge,which increases the axial tensile load of the connecting bolt.This work provides support for the design of brake discs and connecting bolts.展开更多
Block braked railway wheels are subjected to thermal and rolling contact loading.The thermal loading results in high temperatures and thermal stresses which cause slow time dependent processes such as creep,relaxation...Block braked railway wheels are subjected to thermal and rolling contact loading.The thermal loading results in high temperatures and thermal stresses which cause slow time dependent processes such as creep,relaxation and static recovery of the wheel material.At the same time,the rolling contact loading implies a very fast mechanical load application.This paper is focused on material modeling of pearlitic steel for a wide range of loading rates at elevated temperatures.The starting point is a viscoplasticity model including nonlinear isotropic and kinematic hardening.The Delobelle overstress function is employed to capture strain rate dependent response of the material.The model also includes static recovery of the hardening to capture slower viscous(diffusion dominated)behaviour of the material.Experiments for the pearlitic wheel steel ER7 in terms of cyclic strain-controlled uniaxial tests with hold-time,uniaxial ratchetting tests including rapid cycles and biaxial cyclic tests with tension/compression and torsion are used to calibrate the material model.These experiments were performed under isothermal conditions at different temperatures.In the ratchetting tests,higher loading rates are obtained and these have been used to calibrate the high strain rate response of the viscoplasticity model.The paper is concluded with a numerical example of a block braked wheel where the importance of accounting for the viscoplasticity in modelling is highlighted.展开更多
基金Supported by Natural Science Foundation of China(Grant No.52075032)Technology Research and Development Program Project of CHINA RAILWAY(Grant No.P2020J024).
文摘During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mechanical coupling model of high-speed wheel-mounted brake discs containing bolted joints and contact relationships is established.The direct coupling method is used to analyze the temperature and stress of the brake discs during an emergency braking event with an initial speed of 300 km/h.A full-scale bench test is also conducted to monitor the temperatures of the friction ring and bolted joints.The simulation result shows that the surface temperature of the friction ring reaches its peak value of 414°C after 102 s of braking,which agrees well with the bench test result.The maximum alternating thermal stress occurs in the bolt hole where the maximum circumferential compressive stress is−658 MPa and the maximum circumferential tensile stress is 134 MPa.During the braking process,the out-of-plane deformation of the middle part of the friction ring is larger than that of the edge,which increases the axial tensile load of the connecting bolt.This work provides support for the design of brake discs and connecting bolts.
基金The current study is part of the ongoing activities in CHARMEC-Chalmers Railway Mechanics(www.chalmers.se/charmec).Parts of the study have been funded from the European Union’s Horizon 2020 research and innovation programme in the projects In2Track,In2Track2 and In2Track3 under Grant Agreements Nos.826255 and 101012456The simulations were performed using resources at Chalmers Centre for Computational Science and Engineering(C3SE)provided by the Swedish National Infrastructure for Computing(SNIC).
文摘Block braked railway wheels are subjected to thermal and rolling contact loading.The thermal loading results in high temperatures and thermal stresses which cause slow time dependent processes such as creep,relaxation and static recovery of the wheel material.At the same time,the rolling contact loading implies a very fast mechanical load application.This paper is focused on material modeling of pearlitic steel for a wide range of loading rates at elevated temperatures.The starting point is a viscoplasticity model including nonlinear isotropic and kinematic hardening.The Delobelle overstress function is employed to capture strain rate dependent response of the material.The model also includes static recovery of the hardening to capture slower viscous(diffusion dominated)behaviour of the material.Experiments for the pearlitic wheel steel ER7 in terms of cyclic strain-controlled uniaxial tests with hold-time,uniaxial ratchetting tests including rapid cycles and biaxial cyclic tests with tension/compression and torsion are used to calibrate the material model.These experiments were performed under isothermal conditions at different temperatures.In the ratchetting tests,higher loading rates are obtained and these have been used to calibrate the high strain rate response of the viscoplasticity model.The paper is concluded with a numerical example of a block braked wheel where the importance of accounting for the viscoplasticity in modelling is highlighted.