期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Copper-Free Resin-Based Braking Materials:A New Approach for Substituting Copper with Fly-Ash Cenospheres in Composites
1
作者 Kaikui Zheng Youxi Lin +2 位作者 Shanmin You Zhiying Ren Jianmeng Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS 2024年第2期401-412,共12页
Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials with... Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs. 展开更多
关键词 Fly-ash cenospheres Braking materials Friction and wear Heat-fade resistance Wear form
下载PDF
Frictional response of a novel C/C-ZrB_(2)-ZrC-SiC composite under simulated braking 被引量:4
2
作者 Yangbao QIAN Weigang ZHANG +1 位作者 Min GE Xi WEI 《Journal of Advanced Ceramics》 SCIE CAS 2013年第2期157-161,共5页
A novel braking material,C/C-ZrB_(2)-ZrC-SiC carbon fibre-reinforced hybrid ceramic matrix composite,was prepared by chemical vapour infiltration and polymeric precursor infiltration and pyrolysis.Investigation of the... A novel braking material,C/C-ZrB_(2)-ZrC-SiC carbon fibre-reinforced hybrid ceramic matrix composite,was prepared by chemical vapour infiltration and polymeric precursor infiltration and pyrolysis.Investigation of the microstructure of C/C-ZrB_(2)-ZrC-SiC composite showed the homogenous dispersion of three-phase ceramic as the matrix.The frictional properties of the hybrid C/C-ZrB_(2)-ZrC-SiC ceramic matrix composite were measured by a disk-on-disk type dynamometer under dry and wet conditions to simulate the normal landing state of aircraft brake disk friction pairs.C/C-ZrB_(2)-ZrC-SiC ceramic matrix composite has a higher and more stable friction coefficient under wet condition than under dry condition,indicating that the composite has better performance compared with C/C or C/C-SiC braking materials. 展开更多
关键词 ceramic matrix composite brake materials ABRASION braking testing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部