期刊文献+
共找到1,098篇文章
< 1 2 55 >
每页显示 20 50 100
Dynamic analysis of axle box bearings on the high-speed train caused by wheel-rail excitation
1
作者 Qiaoying MA Shaopu YANG +2 位作者 Yongqiang LIU Baosen WANG Zechao LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期441-460,共20页
To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response charact... To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings. 展开更多
关键词 high-speed train track irregularity wheel flat dynamic simulation
下载PDF
Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds
2
作者 Zun-Di Huang Zhen-Bin Zhou +2 位作者 Ning Chang Zheng-Wei Chen Su-Mei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期975-996,共22页
The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(ID... The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(IDDES)method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds.The effects of marshaling lengths(varying from 3-car to 8-car groups)on the train’s aerodynamic performance,surface pressure,and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes(N-S)equations.The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle cars.Conversely,the marshaling lengths are negatively correlated with the time-average side force coefficient(CS)and time-average lift force coefficient(Cl)of the tail car.Compared to the tail car of the 3-car groups,the CS and Cl fell by 27.77%and 18.29%,respectively,for the tail car of the 8-car groups.It is essential to pay more attention to the operational safety of the head car,as it exhibits the highest time average CS.Additionally,the mean pressure difference between the two sides of the tail car body increased with the marshaling lengths,and the side force direction on the tail car was opposite to that of the head and middle cars.Furthermore,the turbulent kinetic energy of the wake structure on the windward side quickly decreased as marshaling lengths increased. 展开更多
关键词 high-speed maglev train marshaling lengths crosswinds aerodynamic features
下载PDF
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
3
作者 Yue Zhou Xi Wang +5 位作者 Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yu Hou 《Railway Engineering Science》 EI 2024年第2期229-243,共15页
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio... The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently. 展开更多
关键词 high-speed train GEARBOX Bench test Vibration behavior Modal identification
下载PDF
Theory and practice for assessing structural integrity and dynamical integrity of high-speed trains
4
作者 Weihua Zhang Yuanchen Zeng +1 位作者 Dongli Song Zhiwei Wang 《Railway Sciences》 2024年第2期113-127,共15页
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass... Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains. 展开更多
关键词 Structural integrity Dynamical integrity Vehicle system dynamics high-speed trains BOGIE Integrity assessment FATIGUE
下载PDF
A trailer car dynamics model considering brake rigging of a high-speed train and its application
5
作者 Zhiwei Wang Linchuan Yang +2 位作者 Jiliang Mo Song Zhu Wenwei Jin 《Railway Engineering Science》 2023年第3期269-280,共12页
Brake systems are essential for the speed regulation or braking of a high-speed train.The vehicle dynamic performance under braking condition is complex and directly affects the reliability and running safety.To revea... Brake systems are essential for the speed regulation or braking of a high-speed train.The vehicle dynamic performance under braking condition is complex and directly affects the reliability and running safety.To reveal the vehicle dynamic behaviour in braking process,a comprehensive trailer car dynamics model(TCDM)considering brake systems is established in this paper.The dynamic interactions between the brake system and the other connected components are achieved using the brake disc-pad frictions,brake suspension systems,and wheel-rail interactions.The force and motion transmission from the brake system to the wheel-rail interface is performed by the proposed TCDM excited by track irregularity.In addition,the validity of TCDM is verified by experimental test results.On this basis,the dynamic behaviour of the coupled system is simulated and discussed.The findings indicate that the braking force significantly affects vehicle dynamic behaviour including the wheel-rail forces,suspension forces,wheelset torsional vibration,etc.The dynamic interactions within the brake system are also significantly affected by the vehicle vibration due to track irregularity.Besides,the developed TCDM can be further employed to the dynamic assessment of such a coupled mechanical system under different braking conditions. 展开更多
关键词 brake system Disc-pad frictions Wheel-rail interactions Track irregularity high-speed train
下载PDF
A discussion about the limitations of the Eurocode’s high-speed load model for railway bridges
6
作者 Gonçalo Ferreira Pedro Montenegro +2 位作者 JoséRui Pinto António Abel Henriques Rui Calçada 《Railway Engineering Science》 EI 2024年第2期211-228,共18页
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H... High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies. 展开更多
关键词 high-speed load model Dynamic analysis high-speed railways train signature Railway bridges Deck acceleration
下载PDF
Numerical and Experimental Analysis of the Aerodynamic Torque for Axle-Mounted Train Brake Discs
7
作者 Nan Liu Chen Hong +4 位作者 Xinchao Su Xing Jin Chen Jiang Yuqi Shi Bingkun Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1867-1882,共16页
As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferentia... As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel.In particular,three upstream velocities were selected on the basis of earlier investigations of trains operating at 160,250,and 400 km/h,respectively.Moreover,3D steady computational fluid dynamics(CFD)simulations of the flow field were conducted to compare with the wind tunnel test outcomes.The results for a 3-car train at 180 km/h demonstrated:(1)good agreement between the air resistance torques obtained from the wind tunnel tests and the related numerical results,with differences ranging from 0.95%to 5.88%;(2)discrepancies ranging from 3.2 to 3.8 N·m;(3)cooling ribs contributing more than 60%of the air resistance torque;(4)the fast rotation of brake discs causing a significantly different flow field near the bogie area,resulting in 25 times more air pumping power loss than that obtained in the stationary brake-disc case. 展开更多
关键词 Axle-mounted train brake disc aerodynamic torque wind tunnel test numerical simulation
下载PDF
Measured load spectra of the bearing in high-speed train gearbox under different gear meshing conditions 被引量:2
8
作者 Yu Hou Xi Wang +7 位作者 Shouguang Sun Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yue Zhou Xiaolong Liu 《Railway Engineering Science》 2023年第1期37-51,共15页
The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on... The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions.Accordingly,the load spectrum of the total radial load car-ried by the bearing was compiled.The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear mesh-ing,which was considered to be caused by the vibration of the shaft and the bearing cage.As the realistic service load input of bearing life assessment,the measured load spectrum under different gear meshing conditions can be used to pre-dict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions. 展开更多
关键词 Gearbox bearing high-speed train Strain response Load spectra Gear meshing conditions
下载PDF
Disturbance observer-based fuzzy fault-tolerant control for high-speed trains with multiple disturbances
9
作者 王千龄 马彩青 林雪 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期383-391,共9页
The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fau... The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results. 展开更多
关键词 fault-tolerant control high-speed trains disturbance observer fuzzy logic
下载PDF
Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape
10
作者 Zhiyuan Dai Tian Li +1 位作者 Weihua Zhang Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1461-1489,共29页
The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress o... The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model. 展开更多
关键词 high-speed train multi-objective optimization PARAMETERIZATION optimization algorithm surrogate model sample infill criterion
下载PDF
Vibration-based bearing fault diagnosis of high-speed trains:A literature review
11
作者 Wanchun Hu Ge Xin +4 位作者 Jiayi Wu Guoping An Yilei Li Ke Feng Jerome Antoni 《High-Speed Railway》 2023年第4期219-223,共5页
Due to the advantages of comfort and safety,high-speed trains are gradually becoming the mainstream public transport in China.Since the operating speed and mileage of high-speed trains have achieved rapid growth,it is... Due to the advantages of comfort and safety,high-speed trains are gradually becoming the mainstream public transport in China.Since the operating speed and mileage of high-speed trains have achieved rapid growth,it is more and more urgent to ensure their reliability and safety.As an important component in the bogies of highspeed trains,the health state of the bearing directly affects the operational safety of the trains.It is therefore necessary to diagnoze the faults of bearings in the bogies of high-speed trains as early as possible.In this paper,the bearing fault diagnostic methods for high-speed trains have been systematically summarized with their challenges and perspectives.First,it briefly introduces the structure of bearings in the bogies as well as the fault characteristic frequencies.Then,a brief review of the research on vibration-based signal processing methods and machine learning methods has been provided.Finally,the challenges and future developments of vibrationbased bearing fault diagnostic methods for high-speed trains have been analyzed. 展开更多
关键词 high-speed trains Machinery fault diagnosis Bogies Bearings
下载PDF
Virtual sample generation for model-based prognostics and health management of on-board high-speed train control system
12
作者 Jiang Liu Baigen Cair +1 位作者 Jinlan Wang Jian Wang 《High-Speed Railway》 2023年第3期153-161,共9页
In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train ... In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations. 展开更多
关键词 high-speed railway Prognostics and health management train control Virtual sample Generative adversarial network
下载PDF
Refined disturbance observer based prescribed performance fixed-time control of high-speed EMS trains with track irregularities
13
作者 Yiran Xie Boyang Zhao Xiuming Yao 《High-Speed Railway》 2023年第3期171-178,共8页
High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is p... High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results. 展开更多
关键词 high-speed electromagnetic suspension train Track irregularity Refined disturbance observer Prescribed performance Fixed-time control
下载PDF
Research on fatigue evaluation method of high-speed train axle based on axle box acceleration
14
作者 Wenjing Wang Yiming Zeng +1 位作者 Ruiguo Yan Yiyue Chen 《High-Speed Railway》 2023年第4期233-240,共8页
As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the di... As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles. 展开更多
关键词 high-speed train axles Axle-box acceleration Dynamic stress of wheelset axle Fatigue damage Wheel-rail contact virtual surface density
下载PDF
A train timetable rescheduling approach based on multi-train tracking optimization of high-speed railways
15
作者 Rongsheng Wang Tao Zhang +2 位作者 Zhiming Yuan Shuxin Ding Qi Zhang 《Railway Sciences》 2023年第3期358-370,共13页
Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signal... Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers. 展开更多
关键词 high-speed railway train timetable rescheduling Multi-train trajectory optimization train operation control Integration of train rescheduling and control
下载PDF
A study on aerodynamic noise characteristics of a high-speed maglev train with a speed of 600 km/h
16
作者 Jie Zhang Yuwei Wu +2 位作者 Jianyong Gao Guangjun Gao Zhigang Yang 《Railway Sciences》 2023年第3期310-326,共17页
Purpose–This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of the maglev train at different ... Purpose–This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of the maglev train at different speed levels.Design/methodology/approach–Based on large eddy simulation(LES)method and Kirchhoff–Ffowcs Williams and Hawkings(K-FWH)equations,the characteristics of dipole and quadrupole sound sources of maglev trains at different speed levels were simulated and analyzed by constructing reasonable penetrable integral surface.Findings–The spatial disturbance resulting from the separation of the boundary layer in the streamlined area of the tail car is the source of aerodynamic sound of the maglev train.The dipole sources of the train are mainly distributed around the radio terminals of the head and tail cars of the maglev train,the bottom of the arms of the streamlined parts of the head and tail cars and the nose tip area of the streamlined part of the tail car,and the quadrupole sources are mainly distributed in the wake area.When the train runs at three speed levels of 400,500 and 600 km$h1,respectively,the radiated energy of quadrupole source is 62.4%,63.3%and 71.7%,respectively,which exceeds that of dipole sources.Originality/value–This study can help understand the aerodynamic noise characteristics generated by the high-speed maglev train and provide a reference for the optimization design of its aerodynamic shape. 展开更多
关键词 high-speed maglev train Aerodynamic noise Penetrable integral surface Large eddy simulation Speed level
下载PDF
High-speed train cooperativecontrol based on fractional-ordersliding mode adaptive algorithm
17
作者 Junting Lin Mingjun Ni Huadian Liang 《Railway Sciences》 2023年第1期84-100,共17页
Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block... Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control. 展开更多
关键词 high-speed trains Sliding mode control Fractional-order differentiation Adaptive law Cooperative control
下载PDF
Rail temperature rise characteristics caused by linear eddy current brake of high-speed train 被引量:3
18
作者 Xiaoshan Lu Yunfeng Li +2 位作者 Mengling Wu Jianyong Zuo Wei Hu 《Journal of Traffic and Transportation Engineering(English Edition)》 2014年第6期448-456,共9页
The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning... The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning the characteristics of rail temperature rise caused by eddy current has its practical necessity. In the research, the working principle of a linear eddy current brake is introduced and its FEA model is established. According to the generation mechanism of eddy current, the theoretical formula of the internal energy which is produced by the eddy current is deduced and the thermal load on the rail is obtained. ANSYS is used to simulate the rail temperature changes under different conditions of thermal loads. The research result shows the main factors which contribute to the rising of rail temperature are the train speed, brake gap and exciting current. The rail temperature rises non-linearly with the in- crease of train speed. The rail temperature rise curve is more sensitive to the exciting current than the air gap. Moreover, the difference stimulated by temperature rising between rails of 60 kg/m and 75 kg/m is presented as well. 展开更多
关键词 high-speed train linear eddy current brake thermal load rail temperature rise
原文传递
Position Control Optimization of Aerodynamic Brake Device for High-speed Trains 被引量:1
19
作者 ZUO Jianyong LUO Zhuojun CHEN Zhongkai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期287-295,共9页
The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentio... The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions--constant, linear, and quadratic--are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25,71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control. 展开更多
关键词 high-speed train aerodynamic brake HYDRAULIC position control optimization.
下载PDF
Simulation Analysis and Verifcation of Temperature and Stress of Wheel-Mounted Brake Disc of a High-Speed Train 被引量:1
20
作者 Junsheng Qu Wenjing Wang +1 位作者 Ziyu Dong Wei Shan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期331-339,共9页
During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mecha... During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mechanical coupling model of high-speed wheel-mounted brake discs containing bolted joints and contact relationships is established.The direct coupling method is used to analyze the temperature and stress of the brake discs during an emergency braking event with an initial speed of 300 km/h.A full-scale bench test is also conducted to monitor the temperatures of the friction ring and bolted joints.The simulation result shows that the surface temperature of the friction ring reaches its peak value of 414°C after 102 s of braking,which agrees well with the bench test result.The maximum alternating thermal stress occurs in the bolt hole where the maximum circumferential compressive stress is−658 MPa and the maximum circumferential tensile stress is 134 MPa.During the braking process,the out-of-plane deformation of the middle part of the friction ring is larger than that of the edge,which increases the axial tensile load of the connecting bolt.This work provides support for the design of brake discs and connecting bolts. 展开更多
关键词 High speed train Wheel-mounted brake disc Temperature feld Stress feld Thermo-mechanical coupling model BOLT
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部