A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
The general m-machine permutation flowshop problem with the total flow-time objective is known to be NP-hard for m ≥ 2. The only practical method for finding optimal solutions has been branch-and-bound algorithms. In...The general m-machine permutation flowshop problem with the total flow-time objective is known to be NP-hard for m ≥ 2. The only practical method for finding optimal solutions has been branch-and-bound algorithms. In this paper, we present an improved sequential algorithm which is based on a strict alternation of Generation and Exploration execution modes as well as Depth-First/Best-First hybrid strategies. The experimental results show that the proposed scheme exhibits improved performance compared with the algorithm in [1]. More importantly, our method can be easily extended and implemented with lightweight threads to speed up the execution times. Good speedups can be obtained on shared-memory multicore systems.展开更多
Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underes...Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underestimate the very global optima. The purpose of this article is to introduce an efficient and safe procedure to rigorously bound the global optima of semidefinite program. This work shows how, using interval arithmetic, rigorous error bounds for the optimal value can be computed by carefully post processing the output of a semidefinite programming solver. A lower bound is computed on a semidefinite relaxation of the constraint system and the objective function. Numerical results are presented using the SDPA (SemiDefinite Programming Algorithm), solver to compute the solution of semidefinite programs. This rigorous bound is injected in a branch and bound algorithm to solve the optimisation problem.展开更多
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
文摘The general m-machine permutation flowshop problem with the total flow-time objective is known to be NP-hard for m ≥ 2. The only practical method for finding optimal solutions has been branch-and-bound algorithms. In this paper, we present an improved sequential algorithm which is based on a strict alternation of Generation and Exploration execution modes as well as Depth-First/Best-First hybrid strategies. The experimental results show that the proposed scheme exhibits improved performance compared with the algorithm in [1]. More importantly, our method can be easily extended and implemented with lightweight threads to speed up the execution times. Good speedups can be obtained on shared-memory multicore systems.
文摘Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underestimate the very global optima. The purpose of this article is to introduce an efficient and safe procedure to rigorously bound the global optima of semidefinite program. This work shows how, using interval arithmetic, rigorous error bounds for the optimal value can be computed by carefully post processing the output of a semidefinite programming solver. A lower bound is computed on a semidefinite relaxation of the constraint system and the objective function. Numerical results are presented using the SDPA (SemiDefinite Programming Algorithm), solver to compute the solution of semidefinite programs. This rigorous bound is injected in a branch and bound algorithm to solve the optimisation problem.