This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, m...This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, machining-assembly flowshop consists of some parallel two-machine flow lines at a machining stage and one robot at an assembly stage. Since an optimal schedule for this problem is not always a permutation schedule, the proposed algorithm first finds a promising permutation schedule, and then searches better non-permutation schedules near the promising permutation schedule in an enumerative manner by elaborating a branching procedure in a branch and bound algorithm. The results of numerical experiments show that the proposed algorithm can efficiently provide an optimal or a near-optimal schedule with high accuracy such as mean relative error being less than 0.2% and the maximum relative error being at most 3%.展开更多
In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log ...In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree.展开更多
In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The maj...In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The major improvement of the proposed new method is that modification algorithm reinforces the bounding operation using a Lagrangian relaxation,which is a concave minimization but obtains a tighter bound than the usual linear programming relaxation.Some computational results are included.Computation results indicate that the algorithm can solve fairly large scale problems.展开更多
Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used....Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used. In this paper a set of approximation algorithms is presented for cases in which the ability to preview at most k(〉=2) arriving bins is given. With the essential assumption that all bin sizes are not less than the largest item size, analytical results show the asymptotic worst case ratios of all k-bounded space and offiine algorithms are 2. Based on experiments by applying algorithms to instances in which item sizes and bin sizes are drawn independently from the continuous uniform distribution respectively in the interval [0,u] and [u,l ], averagecase experimental results show that, with fixed k, algorithms with the Best Fit packing(closing) rule are statistically better than those with the First Fit packing(closing) rule.展开更多
The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) ...The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. .展开更多
This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denote...This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.展开更多
A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal i...A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.展开更多
The natural element method (NEM) is a newly- developed numerical method based on Voronoi diagram and Delaunay triangulation of scattered points, which adopts natural neighbour interpolation to construct trial functi...The natural element method (NEM) is a newly- developed numerical method based on Voronoi diagram and Delaunay triangulation of scattered points, which adopts natural neighbour interpolation to construct trial functions in the framework of Galerkin method. Owing to its distinctive advantages, the NEM is used widely in many problems of computational mechanics. Utilizing the NEM, this paper deals with numerical limit analysis of structures made up of perfectly rigid-plastic material. According to kinematic the- orem of plastic limit analysis, a mathematical programming natural element formulation is established for determining the upper bound multiplier of plane problems, and a direct iteration algorithm is proposed accordingly to solve it. In this algorithm, the plastic incompressibility condition is handled by two different treatments, and the nonlinearity and nons- moothness of the goal function are overcome by distinguishing the rigid zones from the plastic zones at each iteration. The procedure implementation of iterative process is quite simple and effective because each iteration is equivalent to solving an associated elastic problem. The obtained limit load multiplier is proved to monotonically converge to the upper bound of true solution. Several benchmark examples are investigated to validate the significant performance of the NEM in the application field of limit analysis.展开更多
In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorith...In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorithm, APIT algorithm and Bounding Box algorithm are discussed. Simulation of those five localization algorithms is done by MATLAB. The simulation results show that the positioning error of Amorphous algorithm is the minimum. Considering economy and localization accuracy, the Amorphous algorithm can achieve the best localization performance under certain conditions.展开更多
Considering the variation of cohesion along the depth,the upper bound solution of active earth pressure for a rough inclined wall with sloped backfill is formulated based on a log-spiral failure mechanism.For a more a...Considering the variation of cohesion along the depth,the upper bound solution of active earth pressure for a rough inclined wall with sloped backfill is formulated based on a log-spiral failure mechanism.For a more accurate prediction,the influence of intermediate principal stress is taken into consideration using the unified strength theory.Converting the search for the active pressure to an optimization problem,the most critical failure surface can be located by a natural selection-based gravitational search algorithm(GSA).The proposed method is validated compared with existing methods for noncohesive and cohesive cases and proved to be more accordance with the limit equilibrium solution.The influences of the variation of soil cohesion and intermediate principal stress on active earth pressure coefficient are then fully studied.It can be concluded that both the variations of soil cohesion and intermediate principal stress have a significant influence on the active earth pressure coefficient.展开更多
Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering ...Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.展开更多
文摘This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, machining-assembly flowshop consists of some parallel two-machine flow lines at a machining stage and one robot at an assembly stage. Since an optimal schedule for this problem is not always a permutation schedule, the proposed algorithm first finds a promising permutation schedule, and then searches better non-permutation schedules near the promising permutation schedule in an enumerative manner by elaborating a branching procedure in a branch and bound algorithm. The results of numerical experiments show that the proposed algorithm can efficiently provide an optimal or a near-optimal schedule with high accuracy such as mean relative error being less than 0.2% and the maximum relative error being at most 3%.
基金This paper was supported by Ph. D. Foundation of State Education Commission of China.
文摘In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree.
基金Foundation item: Supported by the National Natural Science Foundation of China(10726016) Supported by the Hubei Province Natural Science Foundation Project(T200809 D200613002)
文摘In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The major improvement of the proposed new method is that modification algorithm reinforces the bounding operation using a Lagrangian relaxation,which is a concave minimization but obtains a tighter bound than the usual linear programming relaxation.Some computational results are included.Computation results indicate that the algorithm can solve fairly large scale problems.
文摘Given a list of items and a sequence of variable-sized bins arriving one by one, it is NP-hard to pack the items into the bin list with a goal to minimize the total size of bins from the earliest one to the last used. In this paper a set of approximation algorithms is presented for cases in which the ability to preview at most k(〉=2) arriving bins is given. With the essential assumption that all bin sizes are not less than the largest item size, analytical results show the asymptotic worst case ratios of all k-bounded space and offiine algorithms are 2. Based on experiments by applying algorithms to instances in which item sizes and bin sizes are drawn independently from the continuous uniform distribution respectively in the interval [0,u] and [u,l ], averagecase experimental results show that, with fixed k, algorithms with the Best Fit packing(closing) rule are statistically better than those with the First Fit packing(closing) rule.
文摘The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. .
文摘This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.
文摘A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.
基金supported by the National Foundation for Excellent Doctoral Thesis of China (200025)the Program for New Century Excellent Talents in University (NCET-04-0075)the National Natural Science Foundation of China (19902007)
文摘The natural element method (NEM) is a newly- developed numerical method based on Voronoi diagram and Delaunay triangulation of scattered points, which adopts natural neighbour interpolation to construct trial functions in the framework of Galerkin method. Owing to its distinctive advantages, the NEM is used widely in many problems of computational mechanics. Utilizing the NEM, this paper deals with numerical limit analysis of structures made up of perfectly rigid-plastic material. According to kinematic the- orem of plastic limit analysis, a mathematical programming natural element formulation is established for determining the upper bound multiplier of plane problems, and a direct iteration algorithm is proposed accordingly to solve it. In this algorithm, the plastic incompressibility condition is handled by two different treatments, and the nonlinearity and nons- moothness of the goal function are overcome by distinguishing the rigid zones from the plastic zones at each iteration. The procedure implementation of iterative process is quite simple and effective because each iteration is equivalent to solving an associated elastic problem. The obtained limit load multiplier is proved to monotonically converge to the upper bound of true solution. Several benchmark examples are investigated to validate the significant performance of the NEM in the application field of limit analysis.
文摘In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorithm, APIT algorithm and Bounding Box algorithm are discussed. Simulation of those five localization algorithms is done by MATLAB. The simulation results show that the positioning error of Amorphous algorithm is the minimum. Considering economy and localization accuracy, the Amorphous algorithm can achieve the best localization performance under certain conditions.
基金Project(2016YFC0800200)supported by the National Key Research Plan of China。
文摘Considering the variation of cohesion along the depth,the upper bound solution of active earth pressure for a rough inclined wall with sloped backfill is formulated based on a log-spiral failure mechanism.For a more accurate prediction,the influence of intermediate principal stress is taken into consideration using the unified strength theory.Converting the search for the active pressure to an optimization problem,the most critical failure surface can be located by a natural selection-based gravitational search algorithm(GSA).The proposed method is validated compared with existing methods for noncohesive and cohesive cases and proved to be more accordance with the limit equilibrium solution.The influences of the variation of soil cohesion and intermediate principal stress on active earth pressure coefficient are then fully studied.It can be concluded that both the variations of soil cohesion and intermediate principal stress have a significant influence on the active earth pressure coefficient.
文摘Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.