期刊文献+
共找到8,088篇文章
< 1 2 250 >
每页显示 20 50 100
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
1
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ANN classification intrusion detection data exfiltration encrypted traffic feature extraction network security
下载PDF
A new evolutional model for institutional field knowledge flow network
2
作者 Jinzhong Guo Kai Wang +1 位作者 Xueqin Liao Xiaoling Liu 《Journal of Data and Information Science》 CSCD 2024年第1期101-123,共23页
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose... Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units. 展开更多
关键词 Knowledge flow networks Evolutionary mechanism BA model Knowledge units
下载PDF
Prediction of Porous Media Fluid Flow with Spatial Heterogeneity Using Criss-Cross Physics-Informed Convolutional Neural Networks
3
作者 Jiangxia Han Liang Xue +5 位作者 Ying Jia Mpoki Sam Mwasamwasa Felix Nanguka Charles Sangweni Hailong Liu Qian Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1323-1340,共18页
Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi... Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN. 展开更多
关键词 Physical-informed neural networks(PINN) flow in porous media convolutional neural networks spatial heterogeneity machine learning
下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
4
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 Intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
下载PDF
NFHP-RN:AMethod of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet
5
作者 Tao Yi Xingshu Chen +2 位作者 Mingdong Yang Qindong Li Yi Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期929-955,共27页
Due to the rapid evolution of Advanced Persistent Threats(APTs)attacks,the emergence of new and rare attack samples,and even those never seen before,make it challenging for traditional rule-based detection methods to ... Due to the rapid evolution of Advanced Persistent Threats(APTs)attacks,the emergence of new and rare attack samples,and even those never seen before,make it challenging for traditional rule-based detection methods to extract universal rules for effective detection.With the progress in techniques such as transfer learning and meta-learning,few-shot network attack detection has progressed.However,challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning,difficulties in capturing rich information from original flow in the case of insufficient samples,and the challenge of high-level abstract representation.To address these challenges,a few-shot network attack detection based on NFHP(Network Flow Holographic Picture)-RN(ResNet)is proposed.Specifically,leveraging inherent properties of images such as translation invariance,rotation invariance,scale invariance,and illumination invariance,network attack traffic features and contextual relationships are intuitively represented in NFHP.In addition,an improved RN network model is employed for high-level abstract feature extraction,ensuring that the extracted high-level abstract features maintain the detailed characteristics of the original traffic behavior,regardless of changes in background traffic.Finally,a meta-learning model based on the self-attention mechanism is constructed,achieving the detection of novel APT few-shot network attacks through the empirical generalization of high-level abstract feature representations of known-class network attack behaviors.Experimental results demonstrate that the proposed method can learn high-level abstract features of network attacks across different traffic detail granularities.Comparedwith state-of-the-artmethods,it achieves favorable accuracy,precision,recall,and F1 scores for the identification of unknown-class network attacks through cross-validation onmultiple datasets. 展开更多
关键词 APT attacks spatial pyramid pooling NFHP(network flow holo-graphic picture) ResNet self-attention mechanism META-LEARNING
下载PDF
A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection
6
作者 Lanyao Zhang Shichao Kan +3 位作者 Yigang Cen Xiaoling Chen Linna Zhang Yansen Huang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1631-1648,共18页
Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately ... Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods. 展开更多
关键词 Anomaly detection normalizing flow source domain feature space target domain feature space bidirectional mapping residual network
下载PDF
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
7
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 Renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
下载PDF
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
8
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator Traffic flow Neural network LSTM Elevator Group Control
下载PDF
Influence of matrix physical properties on flow characteristics in dual network model 被引量:1
9
作者 Chen-Chen Wang Yong-Fei Yang +2 位作者 Deng-Lin Han Miao-Miao Su Rong-Rong Hu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2244-2252,共9页
The tight oil formation develops with microfractures and matrix pores,it is important to study the influence of matrix physical properties on flow characteristics.At first,the representative fracture and matrix sample... The tight oil formation develops with microfractures and matrix pores,it is important to study the influence of matrix physical properties on flow characteristics.At first,the representative fracture and matrix samples are selected respectively in the dual media,the fracture and matrix digital rocks are constructed with micro-CT scanning at different resolutions,and the corresponding fracture and matrix pore networks are extracted,respectively.Then,the modified integration method is proposed to build the dual network model containing both fracture and matrix pore-throat elements,while the geometric-topological structure equivalent matrix pores are generated to fill in the skeleton domain of fracture network,the constructed dual network could describe the geometric-topological structure characteristics of fracture and matrix pore-throat simultaneously.At last,by adjusting the matrix pore density and the matrix filling domain factor,a series of dual network models are obtained to analyze the influence of matrix physical properties on flow characteristics in dual-media.It can be seen that the matrix system contributes more to the porosity of the dual media and less to the permeability.With the decrease in matrix pore density,the porosity/permeability contributions of matrix system to dual media keep decreasing,but the decrease is not significant,the oil-water co-flow zone decreases and the irreducible water saturation increases,and the saturation interval dominated by the fluid flow in the fracture keeps increasing.With the decrease in matrix filling domain factor,the porosity/permeability contributions of matrix system to dual media decreases,the oil-water co-flow zone increases and the irreducible water saturation decreases,and the saturation interval dominated by the fluid flow in the fracture keeps increasing.The results can be used to explain the dual-media flow pattern under different matrix types and different fracture control volumes during tight oil production. 展开更多
关键词 network integration Dual media flow characteristics Matrix pore density Matrix filling domain
下载PDF
Spatial Structure of China's E-commerce Express Logistics Network Based on Space of Flows 被引量:1
10
作者 LI Yuanjun WU Qitao +2 位作者 ZHANG Yuling HUANG Guangqing ZHANG Hongou 《Chinese Geographical Science》 SCIE CSCD 2023年第1期36-50,共15页
The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on... The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on the theory of space of flows,this study adopts China Smart Logistics Network relational data to build China's e-commerce express logistics network and explore its spatial structure characteristics through social network analysis(SNA),the PageRank technique,and geospatial methods.The results are as follows:the network density is 0.9270,which is close to 1;hence,indicating that e-commerce express logistics lines between Chinese cities are nearly complete and they form a typical network structure,thereby eliminating fragmented spaces.Moreover,the average minimum number of edges is 1.1375,which indicates that the network has a small world effect and thus has a high flow efficiency of logistics elements.A significant hierarchical diffusion effect was observed in dominant flows with the highest edge weights.A diamond-structured network was formed with Shanghai,Guangzhou,Chongqing,and Beijing as the four core nodes.Other node cities with a large logistics scale and importance in the network are mainly located in the 19 city agglomerations of China,revealing the fact that the development of city agglomerations is essential for promoting the separation of experience space and changing the urban spatial pattern.This study enriches the theory of urban networks,reveals the flow laws of modern logistics elements,and encourages coordinated development of urban logistics. 展开更多
关键词 space of flows e-commerce express logistics urban logistics network logistics big data
下载PDF
DuFNet:Dual Flow Network of Real-Time Semantic Segmentation for Unmanned Driving Application of Internet of Things 被引量:1
11
作者 Tao Duan Yue Liu +2 位作者 Jingze Li Zhichao Lian d Qianmu Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期223-239,共17页
The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving sy... The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis.Semantic segmentation is also a challenging technology for image understanding and scene parsing.We focused on the challenging task of real-time semantic segmentation in this paper.In this paper,we proposed a novel fast architecture for real-time semantic segmentation named DuFNet.Starting from the existing work of Bilateral Segmentation Network(BiSeNet),DuFNet proposes a novel Semantic Information Flow(SIF)structure for context information and a novel Fringe Information Flow(FIF)structure for spatial information.We also proposed two kinds of SIF with cascaded and paralleled structures,respectively.The SIF encodes the input stage by stage in the ResNet18 backbone and provides context information for the feature fusionmodule.Features from previous stages usually contain rich low-level details but high-level semantics for later stages.Themultiple convolutions embed in Parallel SIF aggregate the corresponding features among different stages and generate a powerful global context representation with less computational cost.The FIF consists of a pooling layer and an upsampling operator followed by projection convolution layer.The concise component provides more spatial details for the network.Compared with BiSeNet,our work achieved faster speed and comparable performance with 72.34%mIoU accuracy and 78 FPS on Cityscapes Dataset based on the ResNet18 backbone. 展开更多
关键词 Real-time semantic segmentation convolutional neural network feature fusion unmanned driving fringe information flow
下载PDF
Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow 被引量:1
12
作者 Qingjia Meng Zhou Jiang Jianchun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期58-69,共12页
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ... Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model. 展开更多
关键词 Compressible turbulent channel flow Fully connected neural network model Large eddy simulation
下载PDF
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets 被引量:1
13
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 Artificial neural network Drop size Solvent extraction Pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
Thermogram-based estimation of foot arterial blood flow using neural networks
14
作者 Yueping WANG Lizhong MU Ying HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期325-344,共20页
The altered blood flow in the foot is an important indicator of early diabetic foot complications.However,it is challenging to measure the blood flow at the whole foot scale.This study presents an approach for estimat... The altered blood flow in the foot is an important indicator of early diabetic foot complications.However,it is challenging to measure the blood flow at the whole foot scale.This study presents an approach for estimating the foot arterial blood flow using the temperature distribution and an artificial neural network.To quantify the relationship between the blood flow and the temperature distribution,a bioheat transfer model of a voxel-meshed foot tissue with discrete blood vessels is established based on the computed tomography(CT)sequential images and the anatomical information of the vascular structure.In our model,the heat transfer from blood vessels and tissue and the inter-domain heat exchange between them are considered thoroughly,and the computed temperatures are consistent with the experimental results.Analytical data are then used to train a neural network to determine the foot arterial blood flow.The trained network is able to estimate the objective blood flow for various degrees of stenosis in multiple blood vessels with an accuracy rate of more than 90%.Compared with the Pennes bioheat transfer equation,this model fully describes intra-and inter-domain heat transfer in blood vessels and tissue,closely approximating physiological conditions.By introducing a vascular component to an inverse model,the blood flow itself,rather than blood perfusion,can be estimated,directly informing vascular health. 展开更多
关键词 diabetic foot thermal analysis blood flow inverse method neural network
下载PDF
Feature identification in complex fluid flows by convolutional neural networks
15
作者 Shizheng Wen Michael W.Lee +2 位作者 Kai M.Kruger Bastos Ian K.Eldridge-Allegra Earl H.Dowell 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期447-454,共8页
Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognit... Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics.In this paper,a single-layer convolutional neural network(CNN)was trained to recognize three qualitatively different subsonic buffet flows(periodic,quasi-periodic and chaotic)over a high-incidence airfoil,and a near-perfect accuracy was obtained with only a small training dataset.The convolutional kernels and corresponding feature maps,developed by the model with no temporal information provided,identified large-scale coherent structures in agreement with those known to be associated with buffet flows.Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored.The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers. 展开更多
关键词 Subsonic buffet flows Feature identification Convolutional neural network Long-short term memory
下载PDF
The deep spatiotemporal network with dual-flow fusion for video-oriented facial expression recognition
16
作者 Chenquan Gan Jinhui Yao +2 位作者 Shuaiying Ma Zufan Zhang Lianxiang Zhu 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1441-1447,共7页
The video-oriented facial expression recognition has always been an important issue in emotion perception.At present,the key challenge in most existing methods is how to effectively extract robust features to characte... The video-oriented facial expression recognition has always been an important issue in emotion perception.At present,the key challenge in most existing methods is how to effectively extract robust features to characterize facial appearance and geometry changes caused by facial motions.On this basis,the video in this paper is divided into multiple segments,each of which is simultaneously described by optical flow and facial landmark trajectory.To deeply delve the emotional information of these two representations,we propose a Deep Spatiotemporal Network with Dual-flow Fusion(defined as DSN-DF),which highlights the region and strength of expressions by spatiotemporal appearance features and the speed of change by spatiotemporal geometry features.Finally,experiments are implemented on CKþand MMI datasets to demonstrate the superiority of the proposed method. 展开更多
关键词 Facial expression recognition Deep spatiotemporal network Optical flow Facial landmark trajectory Dual-flow fusion
下载PDF
An artificial viscosity augmented physics-informed neural network for incompressible flow
17
作者 Yichuan HE Zhicheng WANG +2 位作者 Hui XIANG Xiaomo JIANG Dawei TANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1101-1110,共10页
Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or inte... Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or interior data.However,the feasibility of applying PINNs to the flow at moderate or high Reynolds numbers has rarely been reported.The present paper proposes an artificial viscosity(AV)-based PINN for solving the forward and inverse flow problems.Specifically,the AV used in PINNs is inspired by the entropy viscosity method developed in conventional computational fluid dynamics(CFD)to stabilize the simulation of flow at high Reynolds numbers.The newly developed PINN is used to solve the forward problem of the two-dimensional steady cavity flow at Re=1000 and the inverse problem derived from two-dimensional film boiling.The results show that the AV augmented PINN can solve both problems with good accuracy and substantially reduce the inference errors in the forward problem. 展开更多
关键词 physics-informed neural network(PINN) artificial viscosity(AV) cavity driven flow high Reynolds number
下载PDF
Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction
18
作者 Jia-Jun Zhong Yong Ma +3 位作者 Xin-Zheng Niu Philippe Fournier-Viger Bing Wang Zu-kuan Wei 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期53-69,共17页
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial... Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics. 展开更多
关键词 Graph neural network Multi-head attention mechanism Spatio-temporal dependency Traffic flow prediction
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
19
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY Pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Shale oil development techniques and application based on ternary-element storage and flow concept in Jiyang Depression,Bohai Bay Basin,East China
20
作者 YANG Yong 《Petroleum Exploration and Development》 SCIE 2024年第2期380-393,共14页
The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 hor... The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression. 展开更多
关键词 Jiyang Depression continental shale oil reservoir space fracturing stimulation fracture network storage and flow theory 3D development high and stable production
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部