The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis o...The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis of iodine in aqueous solution were given and numerous forms of iodine exist mainly in the acid region of pH values.An increase of the potential of the system results in an increase of iodine speciation.The oxidizing potential of the system will increase by the addition of element iodine.The IO^(3-)anions are stable in the potential range from-2.0 to-0.75 V and at pH value greater than 12.1.An increase of the temperature shifts boundaries of existence of various iodine species in the acid region of pH values.Some of them become unstable.The determined values of the diffusion coefficients and the thickness of the diffusion boundary layer,as well as the solvent concentration on the disc surface(14 mg/L) indicate that the process proceeds in the external diffusion region.Thus,while choosing the conditions of leaching from gold-containing materials of different origins of iodide solvents,it is necessary to carry out the process within the acidic region of pH values,where I^-,I_3^- and IO_4^- ions are capable to form complex compounds with metals.展开更多
Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key...Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [展开更多
There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw...There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw materials is achieved by applying the leaching procedures.However,its low extraction efficiency and the long extraction period limit its large-scale commercial applications in copper recovery,even though bioleaching has been widely employed commercially for heap and dump bioleaching of secondary copper sulfide ores.Overcoming the technical challenges requires a better understanding of leaching kinetics and on-site microbial activities.Herein,this paper reviews the current status of main commercial biomining operations around the world,identifies factors that affect chalcocite dissolution both in chemical leaching and bioleaching,summarizes the related kinetic research,and concludes with a discussion of two on-site chalcocite heap leaching practices.Further,the challenges and innovations for the future development of chalcocite hydrometallurgy are presented in the end.展开更多
Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leach...Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leaching agent concentration, leaching temperature, leaching cumulative time and solid-to-liquid ratio. The thermodynamics and kinetics of the zinc leaching process were also analyzed. The results show that the EAF dust contains 10% (mass fraction) zinc and the median particle size is 0.69 μm. The zinc recovery of 73.4% is obtained tinder the condition of 90 ℃, 6 mol/L NaOH, and 60 min leaching time. With the increase of concentration of NaOH and the cumulative time, zinc leaching will be significantly increased. The kinetics study demonstrates that the leaching reaction is chemically controlled and the reaction activation energy is 15.73 kJ/mol.展开更多
The use of microwave energy in materials processing is a relatively new development presenting numerous ad- vantages because of the rapid heating feature. Microwave technology has great potential to improve the extrac...The use of microwave energy in materials processing is a relatively new development presenting numerous ad- vantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140℃, the solution of 0.5 M H2SOa- 0.05 M Fe:(SOa)a, and the time of I h.展开更多
Extraction and separation of nickel and cobalt from saprolite laterite ore were studied by using a method of microwave-assisted hydrothermal leaching and chemical deposition. The effects of leaching temperature and ti...Extraction and separation of nickel and cobalt from saprolite laterite ore were studied by using a method of microwave-assisted hydrothermal leaching and chemical deposition. The effects of leaching temperature and time on the extraction efficiencies of Ni2+ and Co2+ were investigated in detail under microwave conditions. It is shown that the extraction efficiencies of Ni2+ and Co2+ from the ore pre-roasted at 300℃ for 5 h were 89.19% and 61.89% when the leaching temperature and time were about 70℃ and 60 min, respectively. For the separation process of Ni and Co, the separation of main chemical components was performed by adjusting the pH values of sulfuric leaching solutions using a NaOH solution based on the different pH values of precipitation for metal hydroxides. The final separation efficiencies of Ni and Co were 77.29% and 65.87%, respectively. Furthermore, the separation efficiencies of Fe of 95.36% and Mg of 92.2% were also achieved at the same time.展开更多
In this study, strontium nitrate extraction from celestite in nitric acid solutions was investigated using the leaching method. The influences of acid concentration, solid-to-liquid ratio, stirring speed, and reaction...In this study, strontium nitrate extraction from celestite in nitric acid solutions was investigated using the leaching method. The influences of acid concentration, solid-to-liquid ratio, stirring speed, and reaction temperature on the leaching of strontium from celestite concentrate were studied. The results showed that the leaching rate increased with increasing acid concentration, stirring speed, and temperature and decreased with increasing solid-to-liquid ratio. The particle size was fixed in all of the dissolution experiments. The results showed that the stirring speed and the temperature were the most influential parameters with respect to the leaching process. The kinetic model best fit control by diffusion through the product layer. The activation energy of the dissolution celestite in nitric acid solutions was calculated to be 42.22 kJ/mol.展开更多
Microwave irradiation was used to investigate vanadium slag in place of traditional heating.Factors associated with vanadium extraction ratio were studied following the concentration of leaching agent,oxidant dosage,m...Microwave irradiation was used to investigate vanadium slag in place of traditional heating.Factors associated with vanadium extraction ratio were studied following the concentration of leaching agent,oxidant dosage,microwave power,microwave irradiation time and mass ratio of liquid to solid.Results indicated that leaching ratio based on microwave leaching at atmospheric pressure can get to 68.48% under the conditions following sulfuric acid concentration 30%,mass ratio of liquid to solid ratio 2∶1,mass ratio of vanadium slag to manganese dioxide dosage 25∶1.4,and microwave power 800W for 3.5 h at 95 ℃.While,leaching ratio based on microwave leaching under pressure was up to 45.79% under the conditions following sulfuric acid concentration 20%,mass ratio of liquid to solid ratio 2∶1,mass ratio of vanadium slag to manganese dioxide dosage 25∶0.9,microwave power 800W for 10 min.Results showed leaching based on microwave irradiation under pressure can shorten time 94.44% in comparison with that at atmospheric pressure,and the leaching extraction can improve about 20%.展开更多
The accumulation of electrolytic manganese residue (EMR) has become a serious problem and its recycling will be of great benefit to protect the environment and assist sustainable development. The reusing method was co...The accumulation of electrolytic manganese residue (EMR) has become a serious problem and its recycling will be of great benefit to protect the environment and assist sustainable development. The reusing method was conducted by leaching EMR with sulfuric acid and the optimal leaching condition was 1:3 (g/g) as the ratio of solid to liquid with 20% (g/g) H2SO4 , heating at 90 ℃ for 3 hours, which aims at extracting Mn in a sulfuric acid medium. The produced MnSO4 solution was precipitated by adding alkali and oxidized in aqueous phase. The oxidized products were characterized by various techniques, including X-ray powder diffraction (XRD), Fourier transform infrared (IR) spectrometry, vibrating sample magnetometry (VSM), with Brunauer-Emmett-Teller (BET) specific surface area instrument and laser particle size analyzer. The final products were confirmed to be a single-phase Mn3O4 .展开更多
The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied ...The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied successfully to mixed oxide and chalcocite ores, notably in Chile at Cerro Colorado, Quebrada Blanca and Zaldivar. Currently, there are significant development efforts underway to try to extend heap leaching to chalcopyrite ores. The success of heap leaching/SX/EW has also led to a revival in the development of hydrometallurgical processes to recover copper from chalcopyrite and other copper concentrates. The current status of copper hydrometallurgy is reviewed and the most commercially attractive potential applications are explored. The advantages and disadvantages of the hydrometallurgical treatment of chalcopyrite concentrates and its preliminary economics are compared with those for the current best practices in copper smelting and refining.展开更多
This research was performed to investigate the optimization of copper recovery from copper smelting slag(CSS)with a deep eutectic solvent as a green reagent.The effect of important parameters on the leaching efficienc...This research was performed to investigate the optimization of copper recovery from copper smelting slag(CSS)with a deep eutectic solvent as a green reagent.The effect of important parameters on the leaching efficiency of copper and zinc(as well as dissolution of iron),such as leaching time,leaching temperature,solid/liquid ratio,and particle size was studied.In order to model the copper recovery,an optimization method was used.According to the chemical analysis of CSS,the slag contains 0.9%copper,3.3%zinc,and 36.7%iron.Also,it was found that the CSS is mainly composed of Fe2SiO4,Fe3O4 and SiO2.Copper-containing structures were determined as CuO and CuS.As a result of leaching experiments,80%copper and 61%zinc recoveries were obtained at 48 h,95℃,1/25 g·ml^(-1),and-33 mm.It is noted that the iron and silicon dissolution remained negligible under the selected conditions.According to the mathematical model,the highest copper leaching efficiency(up to 100%)could be under optimum working conditions as 48.5℃leaching temperature,40.1 h leaching duration,and 62.3 ml·g^(-1)solid/liquid ratio.Also,the proposed model revealed that a wide range of experimental levels can be used as leaching parameter to get desired metal leaching efficiency.展开更多
Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circ...Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circuit boards (PCBs) have become of global concern with regard to environmental issues because of their high metal and toxic material contents, which are pollutants. There are many environmental threats owed to the disposal of electronic waste; off-gasses, such as dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons, can be generated during thermal treatments. which can cause serious health problems if effective off=gas cleaning systems are not developed and improved. Moreover, heavy metals will dissolve, and release into the ground water from the landfill sites. Such waste PCBs contain precious metals which are of monetary value. Therefore, it is beneficial to recover the metal content and protect the environment from pollution. Hydrometallurgy is a successful technique used worldwide for the recovery of precious metals (especially gold and silver) from ores, concentrates, and waste materials. It is generally preferred over other methods because it can offer high recovery rates at a relatively low cost. This article reviews the recent trends and developments with regard to the recycling of precious metals from waste PCBs through hydrometallurgical techniques, such as leaching and recovery.展开更多
Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nic...Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.展开更多
The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for ...The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for the Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O system.The zinc solubilities in ammoniacal solutions were also measured with equilibrium experiments,which agree well with the predicted values.The distribution and predominance diagrams show that ammine and hydroxyl ammine complexes are the main aqueous Zn species,Zn(NH3)24-is predominant in weak alkaline solution for both Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O systems.In Zn(Ⅱ)-NH3-Cl--H2O system,the ternary complexes containing ammonia and chloride increase the zinc solubility in neutral solution.There are three zinc compounds,Zn(OH)2,Zn(OH)1.6Cl0.4 and Zn(NH3)2Cl2,on which the zinc solubility depends,according to the total ammonia,chloride and zinc concentration.These thermodynamic diagrams show the effects of ammonia,chloride and zinc concentration on the zinc solubility,which can provide thermodynamic references for the zinc hydrometallurgy.展开更多
文摘The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis of iodine in aqueous solution were given and numerous forms of iodine exist mainly in the acid region of pH values.An increase of the potential of the system results in an increase of iodine speciation.The oxidizing potential of the system will increase by the addition of element iodine.The IO^(3-)anions are stable in the potential range from-2.0 to-0.75 V and at pH value greater than 12.1.An increase of the temperature shifts boundaries of existence of various iodine species in the acid region of pH values.Some of them become unstable.The determined values of the diffusion coefficients and the thickness of the diffusion boundary layer,as well as the solvent concentration on the disc surface(14 mg/L) indicate that the process proceeds in the external diffusion region.Thus,while choosing the conditions of leaching from gold-containing materials of different origins of iodide solvents,it is necessary to carry out the process within the acidic region of pH values,where I^-,I_3^- and IO_4^- ions are capable to form complex compounds with metals.
文摘Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [
基金supported by the National Natural Science Foundation of China(U1932129,51774332,51934009 and 52004086)Natural Science Foundation of Hunan Province(No.2018JJ1041),Fundamental Research Funds for the Central Universities of Central South University(Nos.2021zzts0301 and 2021zzts0299)。
文摘There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world.In most cases,the extraction of copper from such raw materials is achieved by applying the leaching procedures.However,its low extraction efficiency and the long extraction period limit its large-scale commercial applications in copper recovery,even though bioleaching has been widely employed commercially for heap and dump bioleaching of secondary copper sulfide ores.Overcoming the technical challenges requires a better understanding of leaching kinetics and on-site microbial activities.Herein,this paper reviews the current status of main commercial biomining operations around the world,identifies factors that affect chalcocite dissolution both in chemical leaching and bioleaching,summarizes the related kinetic research,and concludes with a discussion of two on-site chalcocite heap leaching practices.Further,the challenges and innovations for the future development of chalcocite hydrometallurgy are presented in the end.
基金Project(20876014) supported by the National Natural Science Foundation of China
文摘Physical and chemical properties of electric arc furnace (EAF) dust from Tianjin seamless Pipe Company were measured and analyzed. The zinc leaching tests in alkaline medium were carried out under variation of leaching agent concentration, leaching temperature, leaching cumulative time and solid-to-liquid ratio. The thermodynamics and kinetics of the zinc leaching process were also analyzed. The results show that the EAF dust contains 10% (mass fraction) zinc and the median particle size is 0.69 μm. The zinc recovery of 73.4% is obtained tinder the condition of 90 ℃, 6 mol/L NaOH, and 60 min leaching time. With the increase of concentration of NaOH and the cumulative time, zinc leaching will be significantly increased. The kinetics study demonstrates that the leaching reaction is chemically controlled and the reaction activation energy is 15.73 kJ/mol.
基金supported by BAPK (The Scientific Research Projects Coordination of Yildiz Technical University) under Project No. 2010-07-02-ODAP01
文摘The use of microwave energy in materials processing is a relatively new development presenting numerous ad- vantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140℃, the solution of 0.5 M H2SOa- 0.05 M Fe:(SOa)a, and the time of I h.
基金financially supported by the National Natural Science Foundation of China(Nos. 51272025,50872011 and 51072022)the National Basic Research Program of China(No. 2007CB613608)the New Century Excellent Researcher Award Program from the Ministry of Education of China (No. NCET-08-0732)
文摘Extraction and separation of nickel and cobalt from saprolite laterite ore were studied by using a method of microwave-assisted hydrothermal leaching and chemical deposition. The effects of leaching temperature and time on the extraction efficiencies of Ni2+ and Co2+ were investigated in detail under microwave conditions. It is shown that the extraction efficiencies of Ni2+ and Co2+ from the ore pre-roasted at 300℃ for 5 h were 89.19% and 61.89% when the leaching temperature and time were about 70℃ and 60 min, respectively. For the separation process of Ni and Co, the separation of main chemical components was performed by adjusting the pH values of sulfuric leaching solutions using a NaOH solution based on the different pH values of precipitation for metal hydroxides. The final separation efficiencies of Ni and Co were 77.29% and 65.87%, respectively. Furthermore, the separation efficiencies of Fe of 95.36% and Mg of 92.2% were also achieved at the same time.
基金financially supported by the Science Research Project Committee of Manisa Celal Bayar University(No.BAP 2013–101)
文摘In this study, strontium nitrate extraction from celestite in nitric acid solutions was investigated using the leaching method. The influences of acid concentration, solid-to-liquid ratio, stirring speed, and reaction temperature on the leaching of strontium from celestite concentrate were studied. The results showed that the leaching rate increased with increasing acid concentration, stirring speed, and temperature and decreased with increasing solid-to-liquid ratio. The particle size was fixed in all of the dissolution experiments. The results showed that the stirring speed and the temperature were the most influential parameters with respect to the leaching process. The kinetic model best fit control by diffusion through the product layer. The activation energy of the dissolution celestite in nitric acid solutions was calculated to be 42.22 kJ/mol.
基金Funded by the National High-tech Development and Research Program(2008AA0312)
文摘Microwave irradiation was used to investigate vanadium slag in place of traditional heating.Factors associated with vanadium extraction ratio were studied following the concentration of leaching agent,oxidant dosage,microwave power,microwave irradiation time and mass ratio of liquid to solid.Results indicated that leaching ratio based on microwave leaching at atmospheric pressure can get to 68.48% under the conditions following sulfuric acid concentration 30%,mass ratio of liquid to solid ratio 2∶1,mass ratio of vanadium slag to manganese dioxide dosage 25∶1.4,and microwave power 800W for 3.5 h at 95 ℃.While,leaching ratio based on microwave leaching under pressure was up to 45.79% under the conditions following sulfuric acid concentration 20%,mass ratio of liquid to solid ratio 2∶1,mass ratio of vanadium slag to manganese dioxide dosage 25∶0.9,microwave power 800W for 10 min.Results showed leaching based on microwave irradiation under pressure can shorten time 94.44% in comparison with that at atmospheric pressure,and the leaching extraction can improve about 20%.
基金the China Scholarship Council (CSC) and Chongqing Science and Technology Commission (CSTC, 2010AC4054)
文摘The accumulation of electrolytic manganese residue (EMR) has become a serious problem and its recycling will be of great benefit to protect the environment and assist sustainable development. The reusing method was conducted by leaching EMR with sulfuric acid and the optimal leaching condition was 1:3 (g/g) as the ratio of solid to liquid with 20% (g/g) H2SO4 , heating at 90 ℃ for 3 hours, which aims at extracting Mn in a sulfuric acid medium. The produced MnSO4 solution was precipitated by adding alkali and oxidized in aqueous phase. The oxidized products were characterized by various techniques, including X-ray powder diffraction (XRD), Fourier transform infrared (IR) spectrometry, vibrating sample magnetometry (VSM), with Brunauer-Emmett-Teller (BET) specific surface area instrument and laser particle size analyzer. The final products were confirmed to be a single-phase Mn3O4 .
文摘The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied successfully to mixed oxide and chalcocite ores, notably in Chile at Cerro Colorado, Quebrada Blanca and Zaldivar. Currently, there are significant development efforts underway to try to extend heap leaching to chalcopyrite ores. The success of heap leaching/SX/EW has also led to a revival in the development of hydrometallurgical processes to recover copper from chalcopyrite and other copper concentrates. The current status of copper hydrometallurgy is reviewed and the most commercially attractive potential applications are explored. The advantages and disadvantages of the hydrometallurgical treatment of chalcopyrite concentrates and its preliminary economics are compared with those for the current best practices in copper smelting and refining.
基金the Karamanoglu Mehmetbey University Scientific Research Projects(BAP)Coordinating Office for support with grant number KMU-BAP-17-M-18.
文摘This research was performed to investigate the optimization of copper recovery from copper smelting slag(CSS)with a deep eutectic solvent as a green reagent.The effect of important parameters on the leaching efficiency of copper and zinc(as well as dissolution of iron),such as leaching time,leaching temperature,solid/liquid ratio,and particle size was studied.In order to model the copper recovery,an optimization method was used.According to the chemical analysis of CSS,the slag contains 0.9%copper,3.3%zinc,and 36.7%iron.Also,it was found that the CSS is mainly composed of Fe2SiO4,Fe3O4 and SiO2.Copper-containing structures were determined as CuO and CuS.As a result of leaching experiments,80%copper and 61%zinc recoveries were obtained at 48 h,95℃,1/25 g·ml^(-1),and-33 mm.It is noted that the iron and silicon dissolution remained negligible under the selected conditions.According to the mathematical model,the highest copper leaching efficiency(up to 100%)could be under optimum working conditions as 48.5℃leaching temperature,40.1 h leaching duration,and 62.3 ml·g^(-1)solid/liquid ratio.Also,the proposed model revealed that a wide range of experimental levels can be used as leaching parameter to get desired metal leaching efficiency.
基金This research was financially supported, in part, by the National Natural Science Foundation of China (No. 21407105), Shanghai Municipal Natural Science Foundation (No. 14ZR1416700), SPU Graduate project fund (A O1GY17F022 ), SPU Key Disciplines Subject (XXKZD1602 ) and Shanghai Cooperative Centre for WEEE Recycling (ZF1224).
文摘Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circuit boards (PCBs) have become of global concern with regard to environmental issues because of their high metal and toxic material contents, which are pollutants. There are many environmental threats owed to the disposal of electronic waste; off-gasses, such as dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons, can be generated during thermal treatments. which can cause serious health problems if effective off=gas cleaning systems are not developed and improved. Moreover, heavy metals will dissolve, and release into the ground water from the landfill sites. Such waste PCBs contain precious metals which are of monetary value. Therefore, it is beneficial to recover the metal content and protect the environment from pollution. Hydrometallurgy is a successful technique used worldwide for the recovery of precious metals (especially gold and silver) from ores, concentrates, and waste materials. It is generally preferred over other methods because it can offer high recovery rates at a relatively low cost. This article reviews the recent trends and developments with regard to the recycling of precious metals from waste PCBs through hydrometallurgical techniques, such as leaching and recovery.
基金supported by the National Natural Science Foundation of China(U2202254,51974025,52034002)the Fundamental Research Funds for the Central Universities(FRF-TT-19-001).
文摘Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.
基金Project(74142000023) supported by Postdoctoral Science Foundation of Central South University,ChinaProject(2012M521547) supported by China Postdoctoral Science FoundationProject(721500452) supported by the Fundamental Research Funds for the Central Universities,China
文摘The thermodynamics in zinc hydrometallurgical process was studied using a chemical equilibrium modeling code(GEMS) to predict the zinc solubility and construct the species distribution and predominance diagrams for the Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O system.The zinc solubilities in ammoniacal solutions were also measured with equilibrium experiments,which agree well with the predicted values.The distribution and predominance diagrams show that ammine and hydroxyl ammine complexes are the main aqueous Zn species,Zn(NH3)24-is predominant in weak alkaline solution for both Zn(Ⅱ)-NH3-H2O and Zn(Ⅱ)-NH3-Cl--H2O systems.In Zn(Ⅱ)-NH3-Cl--H2O system,the ternary complexes containing ammonia and chloride increase the zinc solubility in neutral solution.There are three zinc compounds,Zn(OH)2,Zn(OH)1.6Cl0.4 and Zn(NH3)2Cl2,on which the zinc solubility depends,according to the total ammonia,chloride and zinc concentration.These thermodynamic diagrams show the effects of ammonia,chloride and zinc concentration on the zinc solubility,which can provide thermodynamic references for the zinc hydrometallurgy.