The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While b...The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While brassinosteroids(BRs)are recognized for their diverse roles in plant growth and development,their influence on coleoptile elongation under hypoxic conditions remains largely unexplored.In this study,we demonstrate the significant requirement of BRs for coleoptile elongation in deep water.During coleoptile development,Glycogen Synthase Kinase3-Like Kinase2(GSK2),the central inhibitor of BR signaling in rice,undergoes substantial suppression in deep water but induction in air.In contrast,the dephosphorylated form of BRASSINAZOLE RESISTANT1(OsBZR1),representing the active form of the key BR signaling transcription factor,is induced in water but suppressed in air.Remarkably,the knockout of GSK3-like kinase genes significantly enhances coleoptile elongation in deep water,strongly indicating a vital contribution of BR response to hypoxia-stimulated coleoptile elongation.Transcriptome analysis uncovers both BR-associated and BR-independent hypoxia responses,implicating substance metabolism,redox reactions,abiotic stress responses,and crosstalk with other hormones in the regulation of BR-induced hypoxia responses.In summary,our findings suggest that rice plumules rapidly elongate coleoptiles through the activation of BR response in deep water,enabling them to escape from submergence-induced hypoxia stress.展开更多
Due to their tunable acidity,shape selectivity,and excellent stability,zeolites are of great importance as solid acid materials in industrial catalysis.Tuning the properties of the acid sites in zeolites allows for th...Due to their tunable acidity,shape selectivity,and excellent stability,zeolites are of great importance as solid acid materials in industrial catalysis.Tuning the properties of the acid sites in zeolites allows for the rational design and fabrication of catalysts for target reactions.Dimethyl ether(DME)carbonylation,a critical chain-growth reaction for C1 resource utilization,is selectively catalyzed by the Brønsted acid sites within the eight-membered rings(8-MRs)of mordenite(MOR).It is anticipated that strengthening the Brønsted acidity—particularly in 8-MRs—will improve the catalytic performance of MOR.In this work,density functional theory(DFT)calculations are first employed and the results used to design a modified MOR with stannum(Sn)and to predict the corresponding changes in acidity.Guided by the theoretical studies,a series of Sn-modified MOR are synthesized via a defect-engineering and subsequent heteroatom-substitution strategy.After partial desilication,isolated tetrahedral Sn species in an open configuration are successfully synthesized for the first time,within which tetrahedrally coordinated Al sites are preserved.An acidic characterization is used to confirm that the acidity of the Brønsted acid sites is enhanced by the introduction of the Sn species;as a result,the sample exhibits excellent activity in DME carbonylation reaction.Kinetic and DFT studies reveal that this strengthened acidity facilitates the adsorption of DME and reduces the activation barriers of DME dissociation and acetyl formation,accounting for the improved activity.The work demonstrates mechanistic insights into the promoting effects of strong acidity on DME carbonylation and offers a promising strategy to precisely control the acidic strength of zeolites.展开更多
基金supported by STI 2030–Major Projects (2023ZD0407101)National Key Research and Development Program of China (2022YFD1201700)+1 种基金National Natural Science Foundation (U21A20208,32201704)Innovation Program of CAAS。
文摘The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While brassinosteroids(BRs)are recognized for their diverse roles in plant growth and development,their influence on coleoptile elongation under hypoxic conditions remains largely unexplored.In this study,we demonstrate the significant requirement of BRs for coleoptile elongation in deep water.During coleoptile development,Glycogen Synthase Kinase3-Like Kinase2(GSK2),the central inhibitor of BR signaling in rice,undergoes substantial suppression in deep water but induction in air.In contrast,the dephosphorylated form of BRASSINAZOLE RESISTANT1(OsBZR1),representing the active form of the key BR signaling transcription factor,is induced in water but suppressed in air.Remarkably,the knockout of GSK3-like kinase genes significantly enhances coleoptile elongation in deep water,strongly indicating a vital contribution of BR response to hypoxia-stimulated coleoptile elongation.Transcriptome analysis uncovers both BR-associated and BR-independent hypoxia responses,implicating substance metabolism,redox reactions,abiotic stress responses,and crosstalk with other hormones in the regulation of BR-induced hypoxia responses.In summary,our findings suggest that rice plumules rapidly elongate coleoptiles through the activation of BR response in deep water,enabling them to escape from submergence-induced hypoxia stress.
基金the National Natural Science Foundation of China(21978209 and 22008177)the Royal Society International Collaboration Award(ICA\R1\180317).
文摘Due to their tunable acidity,shape selectivity,and excellent stability,zeolites are of great importance as solid acid materials in industrial catalysis.Tuning the properties of the acid sites in zeolites allows for the rational design and fabrication of catalysts for target reactions.Dimethyl ether(DME)carbonylation,a critical chain-growth reaction for C1 resource utilization,is selectively catalyzed by the Brønsted acid sites within the eight-membered rings(8-MRs)of mordenite(MOR).It is anticipated that strengthening the Brønsted acidity—particularly in 8-MRs—will improve the catalytic performance of MOR.In this work,density functional theory(DFT)calculations are first employed and the results used to design a modified MOR with stannum(Sn)and to predict the corresponding changes in acidity.Guided by the theoretical studies,a series of Sn-modified MOR are synthesized via a defect-engineering and subsequent heteroatom-substitution strategy.After partial desilication,isolated tetrahedral Sn species in an open configuration are successfully synthesized for the first time,within which tetrahedrally coordinated Al sites are preserved.An acidic characterization is used to confirm that the acidity of the Brønsted acid sites is enhanced by the introduction of the Sn species;as a result,the sample exhibits excellent activity in DME carbonylation reaction.Kinetic and DFT studies reveal that this strengthened acidity facilitates the adsorption of DME and reduces the activation barriers of DME dissociation and acetyl formation,accounting for the improved activity.The work demonstrates mechanistic insights into the promoting effects of strong acidity on DME carbonylation and offers a promising strategy to precisely control the acidic strength of zeolites.